The extraction of relationships between military entities and descriptive entities is a key task for automated construction of military knowledge graphs. This category of text unstructured imposed problems such as unf...
详细信息
A Temporal Knowledge Graph (TKG) is a sequence of KGs with respective timestamps, which adopts quadruples in the form of (subject, relation, object, timestamp) to describe dynamic facts. TKG reasoning has facilitated ...
详细信息
Interconnection of all things challenges the traditional communication methods,and Semantic Communication and computing(SCC)will become new *** is a challenging task to accurately detect,extract,and represent semantic...
详细信息
Interconnection of all things challenges the traditional communication methods,and Semantic Communication and computing(SCC)will become new *** is a challenging task to accurately detect,extract,and represent semantic information in the research of SCC-based *** previous research,researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node ***,the content of semantic information is quite *** graph convolutional neural networks provide an effective solution for node classification tasks,due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures,the extracted feature information is subject to varying degrees of ***,this paper extends from a single-layer topology network to a multi-layer heterogeneous topology *** Bidirectional Encoder Representations from Transformers(BERT)training word vector is introduced to extract the semantic features in the network,and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network.A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node *** verify the effectiveness of the algorithm on a real multi-layer heterogeneous network.
Despite ongoing efforts to defend neural classifiers from adversarial attacks, they remain vulnerable, especially to unseen attacks. In contrast, humans are difficult to be cheated by subtle manipulations, since we ma...
详细信息
Wearable health monitoring is a crucial technical tool that offers early warning for chronic diseases due to its superior portability and low power ***,most wearable health data is distributed across dfferent organiza...
详细信息
Wearable health monitoring is a crucial technical tool that offers early warning for chronic diseases due to its superior portability and low power ***,most wearable health data is distributed across dfferent organizations,such as hospitals,research institutes,and companies,and can only be accessed by the owners of the data in compliance with data privacy *** first challenge addressed in this paper is communicating in a privacy-preserving manner among different *** second technical challenge is handling the dynamic expansion of the federation without model *** address the first challenge,we propose a horizontal federated learning method called Federated Extremely Random Forest(FedERF).Its contribution-based splitting score computing mechanism significantly mitigates the impact of privacy protection constraints on model *** on FedERF,we present a federated incremental learning method called Federated Incremental Extremely Random Forest(FedIERF)to address the second technical *** introduces a hardness-driven weighting mechanism and an importance-based updating scheme to update the existing federated model *** experiments show that FedERF achieves comparable performance with non-federated methods,and FedIERF effectively addresses the dynamic expansion of the *** opens up opportunities for cooperation between different organizations in wearable health monitoring.
Identifying cancer-related differentially expressed genes provides significant information for diagnosing tumors, predicting prognoses, and effective treatments. Recently, deep learning methods have been used to perfo...
详细信息
Identifying cancer-related differentially expressed genes provides significant information for diagnosing tumors, predicting prognoses, and effective treatments. Recently, deep learning methods have been used to perform gene differential expression analysis using microarray-based high-throughput gene profiling and have achieved good results. In this study, we proposed a new robust multiple-datasetsbased semi-supervised learning model, MSSL, to perform tumor type classification and candidate cancer-specific biomarkers discovery across multiple tumor types and multiple datasets, which addressed the following long-lasting obstacles:(1) the data volume of the existing single dataset is not enough to fully exert the advantages of deep learning;(2) a large number of datasets from different research institutions cannot be effectively used due to inconsistent internal variances and low quality;(3) relatively uncommon cancers have limited effects on deep learning methods. In our article, we applied MSSL to The Cancer Genome Atlas(TCGA) and the Gene Expression Comprehensive database(GEO) pan-cancer normalized-level3 RNA-seq data and got 97.6% final classification accuracy, which had a significant performance leap compared with previous approaches. Finally, we got the ranking of the importance of the corresponding genes for each cancer type based on classification results and validated that the top genes selected in this way were biologically meaningful for corresponding tumors and some of them had been used as biomarkers, which showed the efficacy of our method.
Preserving details and avoiding high computational costs are the two main challenges for the High-Resolution Salient Object Detection (HRSOD) task. In this paper, we propose a two-stage HRSOD model from the perspectiv...
详细信息
Preserving details and avoiding high computational costs are the two main challenges for the High-Resolution Salient Object Detection (HRSOD) task. In this paper, we propose a two-stage HRSOD model from the perspective of evolution and succession, including an evolution stage with Low-resolution Location Model (LrLM) and a succession stage with High-resolution Refinement Model (HrRM). The evolution stage achieves detail-preserving salient objects localization on the low-resolution image through the evolution mechanisms on supervision and feature;the succession stage utilizes the shallow high-resolution features to complement and enhance the features inherited from the first stage in a lightweight manner and generate the final high-resolution saliency prediction. Besides, a new metric named Boundary-Detail-aware Mean Absolute Error (MAEBD) is designed to evaluate the ability to detect details in high-resolution scenes. Extensive experiments on five datasets demonstrate that our network achieves superior performance at real-time speed (49 FPS) compared to state-of-the-art methods. Our code is publicly available at: https://***/rmcong/ESNet_ICML24. Copyright 2024 by the author(s)
This study presents an overview on intelligent reflecting surface(IRS)-enabled sensing and communication for the forthcoming sixth-generation(6G) wireless networks, in which IRSs are strategically deployed to proactiv...
详细信息
This study presents an overview on intelligent reflecting surface(IRS)-enabled sensing and communication for the forthcoming sixth-generation(6G) wireless networks, in which IRSs are strategically deployed to proactively reconfigure wireless environments to improve both sensing and communication(S&C) performance. First, we exploit a single IRS to enable wireless sensing in the base station's(BS's) non-line-of-sight(NLoS) area. In particular, we present three IRS-enabled NLoS target sensing architectures with fully-passive, semi-passive, and active IRSs, respectively. We compare their pros and cons by analyzing the fundamental sensing performance limits for target detection and parameter estimation. Next, we consider a single IRS to facilitate integrated sensing and communication(ISAC), in which the transmit signals at the BS are used for achieving both S&C functionalities, aided by the IRS through reflective beamforming. We present joint transmit signal and receiver processing designs for realizing efficient ISAC, and jointly optimize the transmit beamforming at the BS and reflective beamforming at the IRS to balance the fundamental performance tradeoff between S&C. Furthermore, we discuss multi-IRS networked ISAC, by particularly focusing on multi-IRS-enabled multi-link ISAC, multi-region ISAC, and ISAC signal routing, respectively. Finally, we highlight various promising research topics in this area to motivate future work.
Instruction tuning on a mixture of tasks has improved zero-shot capabilities in natural language processing (NLP) . Nevertheless, existing methods often learn features that exhibit correlations between instruction-for...
详细信息
Retrieval-augmented generation (RAG) appears as a promising method to alleviate the "hallucination" problem in large language models (LLMs), since it can incorporate external traceable resources for response...
暂无评论