咨询与建议

限定检索结果

文献类型

  • 491 篇 期刊文献
  • 416 篇 会议

馆藏范围

  • 907 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 603 篇 工学
    • 451 篇 计算机科学与技术...
    • 369 篇 软件工程
    • 166 篇 信息与通信工程
    • 81 篇 生物工程
    • 72 篇 电气工程
    • 67 篇 控制科学与工程
    • 56 篇 电子科学与技术(可...
    • 45 篇 光学工程
    • 40 篇 生物医学工程(可授...
    • 33 篇 化学工程与技术
    • 27 篇 机械工程
    • 24 篇 仪器科学与技术
    • 19 篇 交通运输工程
    • 15 篇 网络空间安全
    • 14 篇 航空宇航科学与技...
  • 366 篇 理学
    • 181 篇 数学
    • 109 篇 物理学
    • 91 篇 生物学
    • 63 篇 统计学(可授理学、...
    • 35 篇 化学
    • 29 篇 系统科学
    • 19 篇 地球物理学
  • 194 篇 管理学
    • 117 篇 图书情报与档案管...
    • 85 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 47 篇 医学
    • 38 篇 临床医学
    • 33 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 27 篇 法学
    • 22 篇 社会学
  • 10 篇 经济学
  • 9 篇 文学
  • 7 篇 农学
  • 5 篇 教育学

主题

  • 42 篇 semantics
  • 32 篇 training
  • 30 篇 feature extracti...
  • 29 篇 deep learning
  • 19 篇 knowledge graph
  • 19 篇 computational mo...
  • 17 篇 generative adver...
  • 16 篇 machine learning
  • 16 篇 information retr...
  • 15 篇 conferences
  • 15 篇 data models
  • 14 篇 data mining
  • 14 篇 graph neural net...
  • 14 篇 federated learni...
  • 12 篇 neural networks
  • 12 篇 privacy
  • 11 篇 convolution
  • 11 篇 accuracy
  • 11 篇 forecasting
  • 10 篇 big data

机构

  • 169 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 62 篇 cas key laborato...
  • 43 篇 school of comput...
  • 33 篇 key laboratory o...
  • 31 篇 shandong provinc...
  • 26 篇 institute of com...
  • 21 篇 peng cheng labor...
  • 18 篇 data intelligenc...
  • 17 篇 school of cyber ...
  • 16 篇 institute of com...
  • 15 篇 beijing key labo...
  • 15 篇 key laboratory o...
  • 15 篇 cas key laborato...
  • 14 篇 cas center for e...
  • 14 篇 key laboratory o...
  • 13 篇 gansu provincial...
  • 12 篇 institute of art...
  • 12 篇 chongqing key la...
  • 12 篇 institute for ai...

作者

  • 151 篇 cheng xueqi
  • 108 篇 guo jiafeng
  • 48 篇 lan yanyan
  • 42 篇 shen huawei
  • 34 篇 jin xiaolong
  • 34 篇 fan yixing
  • 30 篇 pang liang
  • 28 篇 zhang ruqing
  • 22 篇 xu jun
  • 22 篇 cao qi
  • 21 篇 huang qingming
  • 20 篇 bai long
  • 19 篇 li zixuan
  • 19 篇 guan saiping
  • 18 篇 xu qianqian
  • 16 篇 xueqi cheng
  • 14 篇 sun xiaoming
  • 12 篇 niyato dusit
  • 11 篇 hu bin
  • 11 篇 yang zhiyong

语言

  • 844 篇 英文
  • 54 篇 其他
  • 15 篇 中文
检索条件"机构=CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology"
907 条 记 录,以下是771-780 订阅
排序:
Graph Regularized Nonnegative Latent Factor Analysis Model for Temporal Link Prediction in Cryptocurrency Transaction networks
arXiv
收藏 引用
arXiv 2022年
作者: Zhou, Yue Liu, Zhigang Yuan, Ye The School of Computer Science and Technology Chongqing University of Posts and Telecommunications Chongqing400065 China The Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing400714 China The Chongqing School University of Chinese Academy of Sciences Chongqing400714 China The College of Computer and Information Science Southwest University Chongqing400715 China
With the development of blockchain technology, the cryptocurrency based on blockchain technology is becoming more and more popular. This gave birth to a huge cryptocurrency transaction network has received widespread ... 详细信息
来源: 评论
Precision Medicine:What Challenges Are We Facing?
收藏 引用
Genomics, Proteomics & Bioinformatics 2016年 第5期14卷 253-261页
作者: Yu Xue Eric-Wubbo Lameijer Kai Ye Kunlin Zhang Suhua Chang Xiaoyue Wang Jianmin Wu Ge Gao Fangqing Zhao Jian Li Chunsheng Han Shuhua Xu Jingfa Xiao Xuerui Yang Xiaomin Ying Xuegong Zhang Wei-Hua Chen Yun Liu Zhang Zhang Kun Huang Jun Yu MOE Key Lahoratory of Molecular Biophysics College of Life Science and Technology and the Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhan 430074China School of Electronic and Information Engineering.Xi'an Jiaotong University.Xi'an 710049 China CAS Key Laboratory of Mental Health Institute of PsychologyChinese Academy of SciencesBeijing 100101China State Key Laboratory of'Medical Molecular Biology Institute of Basic Medical SciencesChinese Academy of Medical SciencesPeking Union Medical CollegeBeijing 100005China MOE Beijing Key Laboratory of Carcinogenesis and Translatiooal ResearchCenter for Cancer BioinformaticsPeking University Cancer Hospital&InstituteBeijing 100142China Center for Bioinformatics State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesPeking UniversityBeijing 100871China Beijing Institutes of Life Science.Chinese Academy of Sciences Beijing 100101China MOE Key Lahoratory of Developnlental Genes and Human Disease Institute of Life SciencesSoutheast UniversityNanjing 210096China State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of SciencesBeijing 100101China Max Planck Independent Research Group on Population Genomics CAS-MPG Partner Institute for Computational Biology(PICB)Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai 200031China CAS Ker Laboratory of Genome Sciences and Information Chinese Academy of Sciences.Beijing 100101China MOE Key Laboratory of Bioinformatics School of Life Sciences Center for Synthetic and Systems BiologyTsinghua UniversityBeijing 100084China Computational Omics Lahoratory Center of Computational BiologyBeijing Institute of Basic Medical SciencesBeijing 100850China Bioinformatics Division TNLIST and MOE Key Laboratory for Bioinformatics Department of AutomationTsinghua UniversityBeijing 100084China Department of Bioinformatics and Systems Biology College of LifeScience and Technol
Following the publication of the US National Research Council (N RC) report " Toward PrecMon Medicine." Building a Knowledge network for Biomedical Research and a New Taxonomy of Diseases" in 2011 [1], several n... 详细信息
来源: 评论
Rec-Symnet: Symbolic network-Based Rectifiable Learning Framework for Symbolic Regression
SSRN
收藏 引用
SSRN 2023年
作者: Liu, Jingyi Li, Weijun Yu, Lina Wu, Min Sun, Linjun Li, Wenqiang Li, Yanjie Institute of Semiconductors Chinese Academy of Sciences Beijing100083 China Center of Materials Science and Optoelectronics Engineering School of Integrated Circuits University of Chinese Academy of Sciences Beijing100049 China Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology Beijing100083 China
Symbolic regression (SR) can be utilized to unveil the underlying mathematical expressions that describe a given set of observed data. At present, SR can be categorized into two methods: learning-from-scratch and lear... 详细信息
来源: 评论
PruneSymNet: A Symbolic Neural network and Pruning Algorithm for Symbolic Regression
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Min Li, Weijun Yu, Lina Li, Wenqiang Liu, Jingyi Li, Yanjie Hao, Meilan AnnLab Institute of Semiconductors Chinese Academy of Sciences Beijing100083 China Center of Materials Science and Optoelectronics Engineering School of Microelectronics University of Chinese Academy of Sciences Beijing100049 China Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology Beijing100083 China
Symbolic regression aims to derive interpretable symbolic expressions from data in order to better understand and interpret data. In this study, a symbolic network called PruneSymNet is proposed for symbolic regressio... 详细信息
来源: 评论
A neural-guided dynamic symbolic network for exploring mathematical expressions from data  24
A neural-guided dynamic symbolic network for exploring mathe...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Wenqiang Li Weijun Li Lina Yu Min Wu Linjun Sun Jingyi Liu Yanjie Li Shu Wei Yusong Deng Meilan Hao AnnLab Institute of Semiconductors Chinese Academy of Sciences Beijing China and School of Electronic Electrical and Communication Engineering & School of Integrated Circuits University of Chinese Academy of Sciences Beijing China and Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology Beijing China AnnLab Institute of Semiconductors Chinese Academy of Sciences Beijing China and School of Electronic Electrical and Communication Engineering & School of Integrated Circuits and Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology Beijing China and Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
Symbolic regression (SR) is a powerful technique for discovering the underlying mathematical expressions from observed data. Inspired by the success of deep learning, recent deep generative SR methods have shown promi...
来源: 评论
AsyncSC: An Asynchronous Sidechain for Multi-Domain data Exchange in Internet of Things
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Lingxiao Dong, Xuewen Wan, Zhiguo Gao, Sheng Tong, Wei Lu, Di Shen, Yulong Du, Xiaojiang The School of Computer Science and Technology Xidian University The Engineering Research Center of Blockchain Technology Application and Evaluation Ministry of Education China The Shaanxi Key Laboratory of Blockchain and Secure Computing Xi'An710071 China The Zhejiang Lab Hangzhou311121 China The School of Information Central University of Finance and Economics Beijing100081 China The School of Information Science and Engineering Zhejiang Sci-Tech University Hangzhou310018 China The School of Computer Science and Technology Xidian University China The Shaanxi Key Laboratory of Network and System Security Xi'An710071 China The School of Engineering and Science Stevens Institute of Technology Hoboken07030 United States
Sidechain techniques improve blockchain scalability and interoperability, providing decentralized exchange and cross-chain collaboration solutions for Internet of Things (IoT) data across various domains. However, cur...
来源: 评论
MemNetAR: Memory network with Adversative Relation for Target-Level Sentiment Classification
MemNetAR: Memory Network with Adversative Relation for Targe...
收藏 引用
2019 IEEE Global Communications Conference (GLOBECOM)
作者: Yiwei Gao Jianwei Niu Xuefeng Liu Kaili Mao Shui Yu State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC) Beihang University Hangzhou Innovation Research Institute Beihang University School of Computer Science and Cyber Engineering Guangzhou University Guangdong China
Target-level sentiment classification aims to identify the sentiment of multiple targets in a sentence. Although existing approaches based on neural network have achieved good performance in this task, we find that ma... 详细信息
来源: 评论
Time-Bin-Encoded Boson Sampling with a Single-Photon Device
收藏 引用
Physical Review Letters 2017年 第19期118卷 190501-190501页
作者: Yu He X. Ding Z.-E. Su H.-L. Huang J. Qin C. Wang S. Unsleber C. Chen H. Wang Y.-M. He X.-L. Wang W.-J. Zhang S.-J. Chen C. Schneider M. Kamp L.-X. You Z. Wang S. Höfling Chao-Yang Lu Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics University of Science and Technology of China Hefei Anhui 230026 China CAS-Alibaba Quantum Computing Laboratory CAS Center for Excellence in Quantum Information and Quantum Physics University of Science and Technology of China Shanghai 201315 China Technische Physik Physikalisches Instität and Wilhelm Conrad Röntgen-Center for Complex Material Systems Universitat Würzburg Am Hubland D-97074 Wüzburg Germany State Key Laboratory of Functional Materials for Informatics Shanghai Institute of Microsystem and Information Technology (SIMIT) Chinese Academy of Sciences 865 Changning Road Shanghai 200050 China SUPA School of Physics and Astronomy University of St Andrews St Andrews KY16 9SS United Kingdom
Boson sampling is a problem strongly believed to be intractable for classical computers, but can be naturally solved on a specialized photonic quantum simulator. Here, we implement the first time-bin-encoded boson sam... 详细信息
来源: 评论
Research on the Distribution Characteristics of Standardized Big data Resources Based on data Visualization——Taking Standardization Practice in Shandong Province as an Example
Research on the Distribution Characteristics of Standardized...
收藏 引用
IEEE International Conference on data science in Cyberspace (DSC)
作者: Jinyang Sun Dongdong Peng Zhe Lu Mengran Zhai Ning Qi Yuanhua Qi SHANDONG SCICOM Information and Economy Research Institute Co. Ltd Jinan China Jinan Municipal Bureau of Big Data Jinan China Shandong Institute of Economy and Informatization Development Jinan China Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center (National Supercomputer Center in Jinan) Qilu University of Technology Shandong Academy of Sciences Jinan China
Standardized big data, as a product of the combination of big data and standardization work, objectively reflects the status quo and trends of standardization work. An in-depth study of the distribution characteristic... 详细信息
来源: 评论
Model-Based Reinforcement Learning for Quantized Federated Learning Performance Optimization
Model-Based Reinforcement Learning for Quantized Federated L...
收藏 引用
GLOBECOM 2022 - 2022 IEEE Global Communications Conference
作者: Nuocheng Yang Sihua Wang Mingzhe Chen Christopher G. Brinton Changchuan Yin Walid Saad Shuguang Cui Beijing Laboratory of Advanced Information Network Beijing University of Posts and Telecommunications Beijing China State Key Laboratory Of Networking And Switching Technology Beijing University of Posts and Telecommunications Beijing China Department of Electrical and Computer Engineering Institute for Data Science and Computing University of Miami Coral Gables FL USA School of Electrical and Computer Engineering Purdue University West Lafayette IN USA Bradley Department of Electrical and Computer Engineering Virginia Tech Arlington VA USA Shenzhen Research Institute of Big Data (SRIBD) and the Future Network of Intelligence Institute (FNii) Chinese University of Hong Kong Shenzhen China
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization. In the proposed bitwidth FL scheme, edge devices train and transmit quantized version... 详细信息
来源: 评论