咨询与建议

限定检索结果

文献类型

  • 63 篇 期刊文献
  • 41 篇 会议

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 66 篇 工学
    • 54 篇 计算机科学与技术...
    • 51 篇 软件工程
    • 13 篇 生物工程
    • 12 篇 化学工程与技术
    • 7 篇 信息与通信工程
    • 5 篇 土木工程
    • 4 篇 机械工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 建筑学
    • 2 篇 电气工程
    • 2 篇 测绘科学与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 材料科学与工程(可...
    • 1 篇 农业工程
  • 40 篇 理学
    • 21 篇 数学
    • 13 篇 化学
    • 13 篇 生物学
    • 6 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 系统科学
  • 21 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 9 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 6 篇 reinforcement le...
  • 5 篇 knowledge graph
  • 4 篇 graph neural net...
  • 4 篇 image retrieval
  • 4 篇 computer vision
  • 3 篇 distillation
  • 3 篇 transformers
  • 3 篇 efficiency
  • 3 篇 benchmark testin...
  • 3 篇 visualization
  • 3 篇 machine learning
  • 2 篇 object detection
  • 2 篇 task analysis
  • 2 篇 logic synthesis
  • 2 篇 sorting
  • 2 篇 feature extracti...
  • 2 篇 combinatorial op...
  • 2 篇 image reconstruc...
  • 2 篇 supervised learn...
  • 2 篇 neural machine t...

机构

  • 62 篇 institute of art...
  • 30 篇 cas key laborato...
  • 19 篇 cas key laborato...
  • 19 篇 cas key laborato...
  • 10 篇 cas key laborato...
  • 10 篇 noah's ark lab h...
  • 7 篇 microsoft resear...
  • 6 篇 the university o...
  • 6 篇 cas key laborato...
  • 5 篇 moe key laborato...
  • 5 篇 eeis department ...
  • 5 篇 cas key laborato...
  • 4 篇 hefei comprehens...
  • 4 篇 college of intel...
  • 3 篇 merchants union ...
  • 3 篇 noah's ark lab h...
  • 3 篇 moe key lab of a...
  • 3 篇 tencent ai lab
  • 3 篇 huawei noah’s ar...
  • 2 篇 tsinghua univers...

作者

  • 47 篇 li houqiang
  • 44 篇 zhou wengang
  • 30 篇 wang jie
  • 24 篇 wu feng
  • 21 篇 wengang zhou
  • 21 篇 houqiang li
  • 11 篇 zhang yongdong
  • 11 篇 deng jiajun
  • 9 篇 li li
  • 9 篇 wang min
  • 9 篇 li xijun
  • 8 篇 wang zhihai
  • 8 篇 li bin
  • 8 篇 kuang yufei
  • 8 篇 jie wang
  • 7 篇 mao yunyao
  • 7 篇 hao jianye
  • 7 篇 feng wu
  • 7 篇 lu zhenbo
  • 6 篇 jiajun deng

语言

  • 93 篇 英文
  • 11 篇 其他
检索条件"机构=CAS Key Laboratory of Technology in GIPAS"
104 条 记 录,以下是91-100 订阅
排序:
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Zhanqiu Wang, Jie Chen, Jiajun Ji, Shuiwang Wu, Feng CAS Key Laboratory of Technology in GIPAS University of Science and Technology of China China Institute of Artificial Intelligence Hefei Comprehensive National Science Center China Texas A&M University United States
Query embedding (QE)—which aims to embed entities and first-order logical (FOL) queries in low-dimensional spaces—has shown great power in multi-hop reasoning over knowledge graphs. Recently, embedding entities and ... 详细信息
来源: 评论
Joint Demosaicing and Denoising With Self Guidance
Joint Demosaicing and Denoising With Self Guidance
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Lin Liu Xu Jia Jianzhuang Liu Qi Tian CAS Key Laboratory of GIPAS University of Science and Technology of China Noah's Ark Lab Huawei Technologies
Usually located at the very early stages of the computational photography pipeline, demosaicing and denoising play important parts in the modern camera image processing. Recently, some neural networks have shown the e... 详细信息
来源: 评论
Contrastive transformation for self-supervised correspondence learning
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Ning Zhou, Wengang Li, Houqiang CAS Key Laboratory of GIPAS University of Science and Technology of China China Institute of Artificial Intelligence Hefei Comprehensive National Science Center China
In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable ... 详细信息
来源: 评论
Incorporating bert into neural machine translation
arXiv
收藏 引用
arXiv 2020年
作者: Zhu, Jinhua Xia, Yingce Wu, Lijun He, Di Qin, Tao Zhou, Wengang Li, Houqiang Liu, Tie-Yan CAS Key Laboratory of GIPAS EEIS Department University of Science and Technology of China Microsoft Research Sun Yat-sen University School of EECS Peking University
The recently proposed BERT (Devlin et al., 2019) has shown great power on a variety of natural language understanding tasks, such as text classification, reading comprehension, etc. However, how to effectively apply B... 详细信息
来源: 评论
Iterative Alignment Network for Continuous Sign Language Recognition
Iterative Alignment Network for Continuous Sign Language Rec...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition
作者: Junfu Pu Wengang Zhou Houqiang Li CAS Key Laboratory of GIPAS University of Science and Technology of China
In this paper, we propose an alignment network with iterative optimization for weakly supervised continuous sign language recognition. Our framework consists of two modules: a 3D convolutional residual network (3D-Res... 详细信息
来源: 评论
SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity Prediction
arXiv
收藏 引用
arXiv 2022年
作者: Pei, Qizhi Wu, Lijun Zhu, Jinhua Xia, Yingce Xie, Shufang Qin, Tao Liu, Haiguang Liu, Tie-Yan Yan, Rui Gaoling School of Artificial Intelligence Renmin University of China No.59 Zhong Guan Cun Avenue Haidian District Beijing100872 China Microsoft Research AI4Science No.5 Dan Ling Street Haidian District Beijing100080 China CAS Key Laboratory of GIPAS EEIS Department University of Science and Technology of China No.96 JinZhai Road Baohe District Anhui Province Hefei230026 China Engineering Research Center of Next-Generation Intelligent Search and Recommendation Ministry of Education China Beijing Key Laboratory of Big Data Management and Analysis Methods China
Accurate prediction of Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery, facilitating the identification of drugs that can effectively interact with specific targets and regulate their a... 详细信息
来源: 评论
Progressive learning of low-precision networks
arXiv
收藏 引用
arXiv 2019年
作者: Zhou, Zhengguang Zhou, Wengang Lv, Xutao Huang, Xuan Wang, Xiaoyu Li, Houqiang CAS Key Laboratory of GIPAS University of Science and Technology of China Intellifusion Inc.
Recent years have witnessed the great advance of deep learning in a variety of vision tasks. Many state-of-theart deep neural networks suffer from large size and high complexity, which makes it difficult to deploy in ... 详细信息
来源: 评论
Voxel R-CNN: Towards high performance voxel-based 3D object detection
arXiv
收藏 引用
arXiv 2020年
作者: Deng, Jiajun Shi, Shaoshuai Li, Peiwei Zhou, Wengang Zhang, Yanyong Li, Houqiang CAS Key Laboratory of GIPAS EEIS Department University of Science and Technology of China China Multimedia Laboratory The Chinese University of Hong Kong Hong Kong Institute of Artificial Intelligence Hefei Comprehensive National Science Center China Department of Computer Science University of Science and Technology of China China
Recent advances on 3D object detection heavily rely on how the 3D data are represented, i.e., voxel-based or point-based representation. Many existing high performance 3D detectors are point-based because this structu... 详细信息
来源: 评论
Relation distillation networks for video object detection
arXiv
收藏 引用
arXiv 2019年
作者: Deng, Jiajun Pan, Yingwei Yao, Ting Zhou, Wengang Li, Houqiang Mei, Tao CAS Key Laboratory of GIPAS University of Science and Technology of China Hefei China JD AI Research Beijing China
It has been well recognized that modeling object-toobject relations would be helpful for object detection. Nevertheless, the problem is not trivial especially when exploring the interactions between objects to boost v... 详细信息
来源: 评论
Relation Distillation Networks for Video Object Detection
Relation Distillation Networks for Video Object Detection
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Jiajun Deng Yingwei Pan Ting Yao Wengang Zhou Houqiang Li Tao Mei CAS Key Laboratory of GIPAS University of Science and Technology of China Hefei China JD AI Research Beijing China
It has been well recognized that modeling object-to-object relations would be helpful for object detection. Nevertheless, the problem is not trivial especially when exploring the interactions between objects to boost ... 详细信息
来源: 评论