Rapid growing intelligent applications require optimized bit allocation in image/video coding to support specific task-driven scenarios such as detection, classification, segmentation, etc. Some learning-based framewo...
详细信息
The following topics are dealt with: video coding; data compression; image coding; convolutional neural nets; decoding; learning (artificial intelligence); motion compensation; video codecs; image reconstruction; filt...
The following topics are dealt with: video coding; data compression; image coding; convolutional neural nets; decoding; learning (artificial intelligence); motion compensation; video codecs; image reconstruction; filtering theory.
Light field image quality assessment (LF-IQA) plays a significant role due to its guidance to Light Field (LF) contents acquisition, processing and application. The LF can be represented as 4-D signal, and its quality...
Light field image quality assessment (LF-IQA) plays a significant role due to its guidance to Light Field (LF) contents acquisition, processing and application. The LF can be represented as 4-D signal, and its quality depends on both angular consistency and spatial quality. However, few existing LF-IQA methods concentrate on effects caused by angular inconsistency. Especially, no-reference methods lack effective utilization of 2D angular information. In this paper, we focus on measuring the 2-D angular consistency for LF-IQA. The Micro-Lens Image (MLI) refers to the angular domain of the LF image, which can simultaneously record the angular information in both horizontal and vertical directions. Since the MLI contains 2D angular information, we propose a No-Reference Light Field image Quality assessment model based on MLI (LF-QMLI). Specifically, we first utilize Global Entropy Distribution (GED) and Uniform Local Binary Pattern descriptor (ULBP) to extract features from the MLI, and then pool them together to measure angular consistency. In addition, the information entropy of SubAperture Image (SAI) is adopted to measure spatial quality. Extensive experimental results show that LF-QMLI achieves the state-of-the-art performance.
In this paper, we propose a novel deep architecture with multiple classifiers for continuous sign language recognition. Representing the sign video with a 3D convolutional residual network and a bidirectional LSTM, we...
详细信息
In this paper, we propose a novel deep architecture with multiple classifiers for continuous sign language recognition. Representing the sign video with a 3D convolutional residual network and a bidirectional LSTM, we formulate continuous sign language recognition as a grammatical-rule-based classification problem. We first split a text sentence of sign language into isolated words and n-grams, where an n-gram is a sequence of consecutive n words in a sentence. Then, we propose a word-independent classifiers (WIC) module and an n-gram classifier (NGC) module to identify the words and n-grams in a sentence, respectively. A greedy decoding algorithm is employed to integrate words and n-grams into the sentence based on the confidence scores provided by both modules. Our method is evaluated on a Chinese continuous sign language recognition benchmark, and the experimental results demonstrate its effectiveness and superiority.
Semantic segmentation is a fundamental task in indoor scene understanding. Most previous supervised approaches rely on densely annotated image data sets. Due to the limited amount of images with segmentation labels, t...
ISBN:
(数字)9781728123455
ISBN:
(纸本)9781728123462
Semantic segmentation is a fundamental task in indoor scene understanding. Most previous supervised approaches rely on densely annotated image data sets. Due to the limited amount of images with segmentation labels, the performance of existing networks is greatly limited. In this paper, we exploit temporal correlation in video frames to improve the performance and robustness of segmentation networks. Two effective learning strategies are proposed to propagate the information from a few labeled frames to their immediate neighbor frames. First, we scale up training dataset for supervised semantic segmentation networks by generating pseudo ground-truth for neighboring frames from a labeled frame using filtered homography transformation. Furthermore, we introduce a self-supervised loss function to ensure temporal consistency between the segmentation results of adjacent frames. The experimental results demonstrate that our proposed method outperforms state-of-the-art techniques for semantic segmentation on NYU-Depth V2 dataset.
Objective quality assessment of stereoscopic panoramic images becomes a challenging problem owing to the rapid growth of 360-degree contents. Different from traditional 2D image quality assessment (IQA), more complex ...
Objective quality assessment of stereoscopic panoramic images becomes a challenging problem owing to the rapid growth of 360-degree contents. Different from traditional 2D image quality assessment (IQA), more complex aspects are involved in 3D omnidirectional IQA, especially unlimited field of view (FoV) and extra depth perception, which brings difficulty to evaluate the quality of experience (QoE) of 3D omnidirectional images. In this paper, we propose a multi-viewport based full-reference stereo 360 IQA model. Due to the freely changeable viewports when browsing in the head-mounted display, our proposed approach processes the image inside FoV rather than the projected one such as equirectangular projection (ERP). In addition, since overall QoE depends on both image quality and depth perception, we utilize the features estimated by the difference map between left and right views which can reflect disparity. The depth perception features along with binocular image qualities are employed to further predict the overall QoE of 3D 360 images. The experimental results on our public Stereoscopic OmnidirectionaL Image quality assessment Database (SOLID) show that the proposed method achieves a significant improvement over some well-known IQA metrics and can accurately reflect the overall QoE of perceived images.
Beamformer with magnitude response constraint can flexibly control the response region by specified beamwidth and response ripple, which has a significant performance against steering vector mismatch. However, a high ...
详细信息
Video stitching remains a challenging problem in computer vision. In this paper, we propose a novel edge-guided method to stitch multiple videos that have small overlapped regions. Our algorithm consists of three step...
ISBN:
(数字)9781728123455
ISBN:
(纸本)9781728123462
Video stitching remains a challenging problem in computer vision. In this paper, we propose a novel edge-guided method to stitch multiple videos that have small overlapped regions. Our algorithm consists of three steps: (1) spherical projection of the input video frames based on camera calibration, (2) edge detection and edge-guided feature matching for video registration, and (3) seam optimization to eliminate distortions and ghosts in the composited panoramic videos. The experimental results and user studies demonstrate that our method is robust to videos that have small overlapped regions and produces more visually pleasing panoramic videos than state-of-the-art techniques.
An energy efficient truncated inner product unit is proposed in this paper. The proposed unit is pipelined and processes the m pairs of n-bit operands in serial, so that only one unit is required and it can be reused ...
详细信息
—Photo-realistic point cloud capture and transmission are the fundamental enablers for immersive visual communication. The coding process of dynamic point clouds, especially video-based point cloud compression (V-PCC...
详细信息
暂无评论