咨询与建议

限定检索结果

文献类型

  • 33 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 36 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 14 篇 工学
    • 8 篇 电子科学与技术(可...
    • 8 篇 信息与通信工程
    • 7 篇 计算机科学与技术...
    • 6 篇 软件工程
    • 5 篇 电气工程
    • 4 篇 控制科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 水利工程
    • 1 篇 测绘科学与技术
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
  • 12 篇 理学
    • 7 篇 数学
    • 5 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 3 篇 系统科学
    • 2 篇 化学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 12 篇 cyclic redundanc...
  • 12 篇 signal processin...
  • 9 篇 target tracking
  • 6 篇 state estimation
  • 6 篇 information proc...
  • 5 篇 australia
  • 5 篇 parameter estima...
  • 4 篇 hidden markov mo...
  • 4 篇 statistics
  • 3 篇 frequency estima...
  • 3 篇 aircraft
  • 3 篇 iterative algori...
  • 2 篇 fading
  • 2 篇 motion estimatio...
  • 2 篇 optical imaging
  • 2 篇 recursive estima...
  • 2 篇 signal to noise ...
  • 2 篇 filtering
  • 2 篇 phase estimation
  • 2 篇 face recognition

机构

  • 5 篇 crc for sensor s...
  • 4 篇 crc for sensor s...
  • 3 篇 crc for sensor s...
  • 3 篇 crc for sensor s...
  • 2 篇 crc for sensor s...
  • 2 篇 crc for sensor s...
  • 2 篇 school of elec e...
  • 2 篇 crc for sensor s...
  • 2 篇 defence science ...
  • 2 篇 idiap research i...
  • 2 篇 crc for sensor s...
  • 2 篇 tracking and sen...
  • 2 篇 electrical and e...
  • 2 篇 crc for sensor s...
  • 1 篇 automatic contro...
  • 1 篇 centre for biome...
  • 1 篇 crc for sensor s...
  • 1 篇 crc for sensor s...
  • 1 篇 center for subsu...
  • 1 篇 eee department a...

作者

  • 5 篇 v. krishnamurthy
  • 3 篇 l.a. johnston
  • 3 篇 d.a. gray
  • 3 篇 m.r. morelande
  • 3 篇 a. logothetis
  • 2 篇 rice feng
  • 2 篇 c. sanderson
  • 2 篇 d. gray
  • 2 篇 s. bengio
  • 2 篇 feng rice
  • 2 篇 vikram krishnamu...
  • 2 篇 d. abbott
  • 2 篇 b. ferguson
  • 2 篇 gray doug
  • 2 篇 morelande mark r...
  • 2 篇 d. musicki
  • 2 篇 x.-c. zhang
  • 2 篇 xuezhi wang
  • 1 篇 white langford b...
  • 1 篇 wang xuezhi

语言

  • 36 篇 英文
检索条件"机构=CRC for Sensor Signal Information Processing"
36 条 记 录,以下是21-30 订阅
排序:
De-interleaving of superimposed quantized autoregressive processes
De-interleaving of superimposed quantized autoregressive pro...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: A. Logothetis V. Krishnamurthy CRC for Sensor Signal and Information Processing Department of Electrical and Electronic Engineering University of Melbourne Parkville VIC Australia
We consider the de-interleaving of N independent autoregressive (AR) processes from 1-bit quantized measurements. De-interleaving has applications in radar and signal detection. Other possible applications are compute... 详细信息
来源: 评论
Mode-matched filtering via the EM algorithm
Mode-matched filtering via the EM algorithm
收藏 引用
American Control Conference (ACC)
作者: L.A. Johnston V. Krishnamurthy CRC for Sensor Signal and Information Processing Department of Electrical and Electronic Engineering University of Melbourne Parkville VIC Australia
We show that a generalization of the EM algorithm, the alternating expectation conditional maximization (AECM) algorithm, can be used to derive a mode matched filtering algorithm called the MMAECM. Mode-matched filter... 详细信息
来源: 评论
Performance of OTH radar array calibration
Performance of OTH radar array calibration
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: I.S.D. Solomon Yu.I. Abramovich D.A. Gray S.J. Anderson CRC For Sensor Signal & Inf. Process. Adelaide Univ. SA Australia Defence Science and Technology Organisation CRC for Sensor Signal and Information Processing University of Adelaide Salisbury Australia
Array calibration algorithms for over-the-horizon (OTH) radar arrays have been proposed in the literature. These algorithms perform array calibration by using echoes from ionised meteor trails, and estimate sensor pos... 详细信息
来源: 评论
On the equivalence of the extended Kalman smoother and the expectation maximisation algorithm for polynomial signal models
On the equivalence of the extended Kalman smoother and the e...
收藏 引用
information, Decision and Control (IDC)
作者: L.A. Johnston V. Krishnamurthy CRC for Sensor Signal and Information Processing (CSSIP) Department of Electrical and Electronic Engineering University of Melbourne Parkville VIC Australia
The iterated extended Kalman smoother (IEKS) is shown to be equivalent to one iteration of the expectation maximisation (EM)-based SAGE algorithm for the class of nonlinear signal models containing polynomial dynamics... 详细信息
来源: 评论
Closed-Loop Frequency Tracking and Rejection
收藏 引用
IFAC Proceedings Volumes 1997年 第6期30卷 1263-1268页
作者: Allan J Connolly Barbara F La Scala Peter J Kootsookos CRC for Robust and Adaptive Systems Department of Systems Engineering The Australian National University Canberra ACT 0200 Australia CRC for Sensor Signal and Information Processing Department of Electrical Engineering University of Melbourne Parkville VIC 3052 Australia
This paper develops an adaptive controller for active vibration control. The method is based on the LQG approach via disturbance modelling given in De Nicolao et al. (1992b). This approach to the narrow band disturban... 详细信息
来源: 评论
A statistical rationalisation of Hartley's normalised eight-point algorithm
A statistical rationalisation of Hartley's normalised eight-...
收藏 引用
International Conference on Image Analysis and processing
作者: W. Chojnacki M.J. Brooks A. van den Hengel D. Gawley School of Computer Science University of Adelaide Adelaide SA Australia CRC for Sensor Signal and Information Processing Mawson Lakes SA Australia
The eight-point algorithm of Hartley occupies an important place in computer vision, notably as a means of providing an initial value of the fundamental matrix for use in iterative estimation methods. In this paper, a... 详细信息
来源: 评论
The pmht with hysteresis
The pmht with hysteresis
收藏 引用
International Conference on information Fusion
作者: S.J. Davey D.A. Gray Defence Science and Technology Organisation Australia School of Elec Engineering University of Adelaide Australia CRC for Sensor Signal Information Processing Australia
The Probabilistic Multi-Hypothesis Tracker (PMHT) is a recent algorithm based on the application of Expectation Maximisation to multi-target tracking. The algorithm treats the sensor measurements as independent observ... 详细信息
来源: 评论
l/sub 1/ state estimation of jump Markov linear systems
l/sub 1/ state estimation of jump Markov linear systems
收藏 引用
IEEE Conference on Decision and Control
作者: C. Carlemalm A. Logothetis V. Krishnamurthy Automatic Control Royal Institute of Technology Stockholm Sweden CRC for Sensor Signal and Information Processing Department of Electrical and Electronic Engineering University of Melbourne Australia
We consider the state estimation in an l/sub 1/ sense of non-stationary jump Markov linear systems. The parameters of a jump Markov linear system evolve with time according to the realization of a finite state Markov ... 详细信息
来源: 评论
Parametric Pulse Train De-Interleaving of Stochastic Sources
收藏 引用
IFAC Proceedings Volumes 1996年 第1期29卷 4231-4236页
作者: Andrew Logothetis Vikram Krishnamurthy H. Vincent Poor CRC for Sensor Signal and Information Processing Department of Electrical and Electronic Engineering University of Melbourne Parkville Victoria 3052 Australia Department of Electrical Engineering Princeton University Princeton NJ 08544-5263 USA
In this paper we consider de-interleaving a finite number of stochastic parametric sources. The sources are modeled as independent autoregressive (AR) processes. Based on a Markovian switching policy, we assume that t... 详细信息
来源: 评论
Multiple target tracking with a pixelized sensor
Multiple target tracking with a pixelized sensor
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: M.R. Morelande C.M. Kreucher K. Kastella CRC for Sensor Signal and Information Processing University of Melbourne Australia University of Michigan Ann Arbor MI USA General Dynamics Ann Arbor MI USA
This paper describes a computationally efficient method for tracking multiple moving targets. The method is predicated on estimation of the joint multitarget probability density (JMPD), which is a single probabilistic... 详细信息
来源: 评论