咨询与建议

限定检索结果

文献类型

  • 43 篇 期刊文献
  • 29 篇 会议

馆藏范围

  • 72 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 工学
    • 28 篇 控制科学与工程
    • 28 篇 计算机科学与技术...
    • 28 篇 软件工程
    • 15 篇 光学工程
    • 13 篇 信息与通信工程
    • 10 篇 生物工程
    • 5 篇 建筑学
    • 5 篇 土木工程
    • 5 篇 交通运输工程
    • 4 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 电气工程
    • 3 篇 轻工技术与工程
    • 3 篇 航空宇航科学与技...
    • 3 篇 农业工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 生物医学工程(可授...
  • 31 篇 理学
    • 15 篇 数学
    • 10 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 化学
    • 3 篇 系统科学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
  • 4 篇 农学
    • 4 篇 作物学
  • 4 篇 管理学
    • 3 篇 图书情报与档案管...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 军事学

主题

  • 4 篇 optical radar
  • 3 篇 mapping
  • 3 篇 convolutional ne...
  • 2 篇 continuous time ...
  • 2 篇 neural networks
  • 2 篇 network architec...
  • 2 篇 feature extracti...
  • 2 篇 autonomous vehic...
  • 2 篇 data models
  • 2 篇 robotics
  • 2 篇 training
  • 2 篇 adaptation model...
  • 1 篇 artemis
  • 1 篇 digital images
  • 1 篇 tools
  • 1 篇 jamming
  • 1 篇 musculoskeletal ...
  • 1 篇 motion analysis
  • 1 篇 scalability
  • 1 篇 robot

机构

  • 14 篇 brisbane
  • 12 篇 robotics and aut...
  • 6 篇 robotics and aut...
  • 5 篇 the robotics and...
  • 4 篇 robotics and aut...
  • 4 篇 robotics and aut...
  • 4 篇 robotics and aut...
  • 3 篇 signal processin...
  • 3 篇 division of smar...
  • 3 篇 autonomous syste...
  • 2 篇 department of pr...
  • 2 篇 department of ph...
  • 2 篇 department of ae...
  • 2 篇 the robotics and...
  • 2 篇 defence science ...
  • 2 篇 queensland unive...
  • 2 篇 cares department...
  • 2 篇 queensland unive...
  • 2 篇 robotics and aut...
  • 2 篇 autonomous syste...

作者

  • 23 篇 moghadam peyman
  • 15 篇 sridharan sridha
  • 15 篇 fookes clinton
  • 10 篇 ramezani milad
  • 7 篇 knights joshua
  • 7 篇 peyman moghadam
  • 6 篇 borges paulo
  • 6 篇 howard david
  • 4 篇 clinton fookes
  • 4 篇 milad ramezani
  • 4 篇 elfes alberto
  • 4 篇 brett james
  • 4 篇 sridha sridharan
  • 4 篇 vidanapathirana ...
  • 4 篇 williams jason
  • 3 篇 joshua knights
  • 3 篇 hernández emili
  • 3 篇 hoerger marcus
  • 3 篇 david howard
  • 3 篇 fernando tharind...

语言

  • 71 篇 英文
  • 1 篇 其他
检索条件"机构=CSIRO Data61 Robotics and Autonomous Systems Group"
72 条 记 录,以下是1-10 订阅
排序:
Spectral-Enhanced Transformers: Leveraging Large-Scale Pretrained Models for Hyperspectral Object Tracking  14
Spectral-Enhanced Transformers: Leveraging Large-Scale Pretr...
收藏 引用
14th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2024
作者: Mohamed, Shaheer Fernando, Tharindu Sridharan, Sridha Moghadam, Peyman Fookes, Clinton Signal Processing Artificial Intelligence and Vision Technologies Queensland University of Technology Brisbane Australia Robotics and Autonomous Systems Data61 CSIRO BrisbaneQLD Australia
Hyperspectral object tracking using snapshot mosaic cameras is emerging as it provides enhanced spectral information alongside spatial data, contributing to a more comprehensive understanding of material properties. U... 详细信息
来源: 评论
Uncertainty propagation in the internet of things
收藏 引用
Discover Internet of Things 2024年 第1期4卷 1-20页
作者: Pal, Shantanu Khalifa, Sara Miller, Dimity Dedeoglu, Volkan Dorri, Ali Ramachandran, Gowri Moghadam, Peyman Kusy, Brano Jurdak, Raja The School of Information Technology Faculty of Science Engineering and Built Environment Deakin University MelbourneVIC 3125 Australia The School of Information Systems Faculty of Science Queensland University of Technology BrisbaneQLD4000 Australia The School of Electrical Engineering and Robotics Faculty of Engineering Queensland University of Technology BrisbaneQLD4000 Australia The Distributed Sensing Systems Group Data61 CSIRO PullenvaleQLD 4069 Australia The School of Computer Science Faculty of Science Queensland University of Technology BrisbaneQLD 4000 Australia The CSIRO Robotics Data61 CSIRO PullenvaleQLD 4069 Australia
The Internet of Things (IoT) detects context through sensors capturing data from dynamic physical environments, in order to inform automation decisions within cyber physical systems (CPS). Diverse types of uncertainty... 详细信息
来源: 评论
Real-time Background Subtraction under Varying Lighting Conditions
Real-time Background Subtraction under Varying Lighting Cond...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Sisi Liang Darren Baker Robotics and Autonomous Systems Group Data61 CSIRO Brisbane QLD Australia
Background subtraction is an important topic in computer vision and video analysis. It is challenging to robustly segment foreground and background in complex scenarios. In the literature there are efforts to address ...
来源: 评论
GeoAdapt: Self-Supervised Test-Time Adaptation in LiDAR Place Recognition Using Geometric Priors
arXiv
收藏 引用
arXiv 2023年
作者: Knights, Joshua Hausler, Stephen Sridharan, Sridha Fookes, Clinton Moghadam, Peyman CSIRO Robotics and Autonomous Systems DATA61 CSIRO Australia Brisbane Australia
LiDAR place recognition approaches based on deep learning suffer from significant performance degradation when there is a shift between the distribution of training and test datasets, often requiring re-training the n... 详细信息
来源: 评论
Credible Online Dynamics Learning for Hybrid UAVs
Credible Online Dynamics Learning for Hybrid UAVs
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: David Rohr Nicholas Lawrance Olov Andersson Roland Siegwart Autonomous Systems Lab ETH Zurich Zurich Switzerland Robotics and Autonomous Systems Group CSIRO Data61 QLD Australia
Hybrid unmanned aerial vehicles (H-UAVs) are highly versatile platforms with the ability to transition between rotary- and fixed-wing flight. However, their (aero)dynamics tend to be highly nonlinear which increases t...
来源: 评论
Wild-Places: A Large-Scale dataset for Lidar Place Recognition in Unstructured Natural Environments
Wild-Places: A Large-Scale Dataset for Lidar Place Recogniti...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Joshua Knights Kavisha Vidanapathirana Milad Ramezani Sridha Sridharan Clinton Fookes Peyman Moghadam Robotics and Autonomous Systems Group DATA61 CSIRO Australia School of Electrical Engineering and Robotics Queensland University of Technology (QUT) Australia
Many existing datasets for lidar place recognition are solely representative of structured urban environments, and have recently been saturated in performance by deep learning based approaches. Natural and unstructure...
来源: 评论
Wild-Places: A Large-Scale dataset for Lidar Place Recognition in Unstructured Natural Environments
arXiv
收藏 引用
arXiv 2022年
作者: Knights, Joshua Vidanapathirana, Kavisha Ramezani, Milad Sridharan, Sridha Fookes, Clinton Moghadam, Peyman Robotics and Autonomous Systems Group DATA61 CSIRO Australia Australia
— Many existing datasets for lidar place recognition are solely representative of structured urban environments, and have recently been saturated in performance by deep learning based approaches. Natural and unstruct... 详细信息
来源: 评论
FactoFormer: Factorized Hyperspectral Transformers with Self-Supervised Pretraining
arXiv
收藏 引用
arXiv 2023年
作者: Mohamed, Shaheer Haghighat, Maryam Fernando, Tharindu Sridharan, Sridha Fookes, Clinton Moghadam, Peyman The Robotics and Autonomous Systems DATA61 CSIRO BrisbaneQLD4069 Australia Brisbane Australia
Hyperspectral images (HSIs) contain rich spectral and spatial information. Motivated by the success of transformers in the field of natural language processing and computer vision where they have shown the ability to ... 详细信息
来源: 评论
Deep Robust Multi-Robot Re-localisation in Natural Environments
arXiv
收藏 引用
arXiv 2023年
作者: Ramezani, Milad Griffiths, Ethan Haghighat, Maryam Pitt, Alex Moghadam, Peyman The Robotics and Autonomous Systems DATA61 CSIRO BrisbaneQLD4069 Australia Brisbane Australia
The success of re-localisation has crucial implications for the practical deployment of robots operating within a prior map or relative to one another in real-world scenarios. Using single-modality, place recognition ... 详细信息
来源: 评论
Point Cloud Segmentation Using Sparse Temporal Local Attention
Point Cloud Segmentation Using Sparse Temporal Local Attenti...
收藏 引用
2021 Australasian Conference on robotics and Automation, ACRA 2021
作者: Knights, Joshua Moghadam, Peyman Fookes, Clinton Sridharan, Sridha Robotics and Autonomous Systems CSIRO Data61 Australia Queensland University of Technology Australia
Point clouds are a key modality used for perception in autonomous vehicles, providing the means for a robust geometric understanding of the surrounding environment. However despite the sensor outputs from autonomous v... 详细信息
来源: 评论