咨询与建议

限定检索结果

文献类型

  • 248 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 252 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 108 篇 医学
    • 82 篇 临床医学
    • 57 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
    • 8 篇 公共卫生与预防医...
  • 100 篇 理学
    • 62 篇 生物学
    • 12 篇 数学
    • 9 篇 物理学
    • 6 篇 化学
    • 5 篇 统计学(可授理学、...
    • 2 篇 天文学
  • 89 篇 工学
    • 36 篇 生物医学工程(可授...
    • 34 篇 计算机科学与技术...
    • 34 篇 软件工程
    • 29 篇 生物工程
    • 9 篇 光学工程
    • 6 篇 信息与通信工程
    • 4 篇 电气工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 控制科学与工程
    • 3 篇 化学工程与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 安全科学与工程
  • 27 篇 农学
    • 7 篇 作物学
  • 19 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
    • 4 篇 工商管理
    • 4 篇 公共管理
  • 2 篇 教育学
  • 1 篇 哲学

主题

  • 7 篇 pathology
  • 4 篇 cancer
  • 4 篇 diseases
  • 4 篇 tumors
  • 3 篇 computational bi...
  • 3 篇 machine learning
  • 3 篇 gene expression
  • 2 篇 human papillomav...
  • 2 篇 deep learning
  • 2 篇 generative adver...
  • 2 篇 image segmentati...
  • 2 篇 risk factors
  • 2 篇 cancer immunothe...
  • 2 篇 stage at diagnos...
  • 2 篇 genome-wide asso...
  • 2 篇 mortality
  • 2 篇 cervical cancer
  • 2 篇 epigenetic regul...
  • 2 篇 china
  • 2 篇 epigenetics

机构

  • 12 篇 cancer program b...
  • 11 篇 department of bi...
  • 11 篇 department of da...
  • 10 篇 department of in...
  • 10 篇 department of me...
  • 9 篇 department of bi...
  • 9 篇 dana-farber canc...
  • 8 篇 department of tw...
  • 8 篇 department of me...
  • 8 篇 department of pa...
  • 7 篇 institute for ca...
  • 7 篇 department of mo...
  • 7 篇 department of pa...
  • 7 篇 cancer data scie...
  • 7 篇 department of pa...
  • 7 篇 harvard medical ...
  • 7 篇 broad institute ...
  • 7 篇 data science pro...
  • 6 篇 national institu...
  • 6 篇 cancer program b...

作者

  • 25 篇 mahmood faisal
  • 20 篇 williamson drew ...
  • 19 篇 lu ming y.
  • 15 篇 chen tiffany y.
  • 14 篇 chen richard j.
  • 9 篇 jaume guillaume
  • 9 篇 lipkova jana
  • 8 篇 wei zheng
  • 7 篇 caroline hayward
  • 7 篇 song andrew h.
  • 6 篇 timothy m frayli...
  • 6 篇 danish saleheen
  • 6 篇 eleftheria zeggi...
  • 6 篇 mark i mccarthy
  • 6 篇 kari stefansson
  • 6 篇 macarthur daniel...
  • 6 篇 ezhov ivan
  • 6 篇 kofler florian
  • 6 篇 chen bowen
  • 6 篇 menze bjoern

语言

  • 245 篇 英文
  • 5 篇 其他
  • 2 篇 中文
检索条件"机构=Cancer Data Science Program"
252 条 记 录,以下是41-50 订阅
排序:
Optimizing Postneoadjuvant Treatment of Residual Breast cancer With Adjuvant Bevacizumab Alone, With Metronomic or Standard-Dose Chemotherapy: A Combined Analysis of DFCI 05-055 and DFCI 09-134/TBCRC 012/ABCDE Clinical Trials
收藏 引用
Clinical Breast cancer 2025年 第4期25卷 e419-e430.e5页
作者: Trapani, Dario Jin, Qingchun Miller, Kathy D. Rugo, Hope S. Reeder-Hayes, Katherine E. Traina, Tiffany Abdou, Yara Falkson, Carla Abramson, Vandana Ligibel, Jennifer Chen, Wendy Come, Steven Nohria, Anju Ryabin, Nicole Tayob, Nabihah Tolaney, Sara M Burstein, Harold J. Mayer, Erica L. Medical Oncology Dana-Farber Cancer Institute Boston MA United States Breast Oncology Program Dana-Farber Brigham Cancer Center Boston MA United States Harvard Medical School Boston MA United States Data Science Dana-Farber Cancer Institute Boston MA United States Indiana University Melvin and Bren Simon Comprehensive Cancer Center Indianapolis IN United States University of California at San Francisco San Francisco CA United States University of North Carolina Lineberger Comprehensive Cancer Institute Chapel Hill NC United States Memorial Sloan Kettering Cancer Center New York NY United States University of Alabama Birmingham AL United States Vanderbilt University Nashville TN United States Beth Israel Deaconess Medical Center Boston MA United States Division of Cardiovascular Medicine Brigham and Women's Hospital Boston MA United States
Background: Breast cancer patients with residual disease after neoadjuvant therapy have increased risk of recurrence. Novel therapies to decrease this risk are urgently needed. Methods: Two clinical trials (05-055 and... 详细信息
来源: 评论
Multimodal Whole Slide Foundation Model for Pathology
arXiv
收藏 引用
arXiv 2024年
作者: Ding, Tong Wagner, Sophia J. Song, Andrew H. Chen, Richard J. Lu, Ming Y. Zhang, Andrew Vaidya, Anurag J. Jaume, Guillaume Shaban, Muhammad Kim, Ahrong Williamson, Drew F.K. Chen, Bowen Almagro-Perez, Cristina Doucet, Paul Sahai, Sharifa Chen, Chengkuan Komura, Daisuke Kawabe, Akihiro Ishikawa, Shumpei Gerber, Georg Peng, Tingying Le, Long Phi Mahmood, Faisal Department of Pathology Mass General Brigham Harvard Medical School BostonMA United States Data Science Program Dana-Farber Cancer Institute BostonMA United States Cancer Program Broad Institute of Harvard and MIT CambridgeMA United States John A. Paulson School of Engineering and Applied Sciences Harvard University CambridgeMA United States Helmholtz Munich German Research Center for Environment and Health Munich Germany School of Computation Information and Technology Technical University of Munich Munich Germany Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA United States Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology CambridgeMA United States Department of Pathology Pusan National University Busan Korea Republic of Department of Pathology and Laboratory Medicine Emory University School of Medicine AtlantaGA United States Harvard Data Science Initiative Harvard University CambridgeMA United States Department of Systems Biology Harvard Medical School BostonMA United States Department of Preventive Medicine Graduate School of Medicine The University of Tokyo Tokyo Japan Division of Pathology National Cancer Center Exploratory Oncology Research & Clinical Trial Center Chiba Japan
The field of computational pathology has been transformed with recent advances in foundation models that encode histopathology region-of-interests (ROIs) into versatile and transferable feature representations via sel... 详细信息
来源: 评论
Pan-cancer integrative histology-genomic analysis via interpretable multimodal deep learning
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Richard J. Lu, Ming Y. Williamson, Drew F.K. Chen, Tiffany Y. Lipkova, Jana Shaban, Muhammad Shady, Maha Williams, Mane Joo, Bumjin Noor, Zahra Mahmood, Faisal Department of Pathology Brigham and Women's Hospital Harvard Medical School BostonMA United States Department of Biomedical Informatics Harvard Medical School BostonMA United States Cancer Program Broad Institute of Harvard MIT CambridgeMA United States Cancer Data Science Program Dana-Farber Cancer Institute BostonMA United States Department of Computer Science Harvard University CambridgeMA United States
The rapidly emerging field of deep learning-based computational pathology has demonstrated promise in developing objective prognostic models from histology whole slide images. However, most prognostic models are eithe... 详细信息
来源: 评论
Genetic Perturbation of CD70/CD27 Co-Stimulation Promotes the Development of Bcl6-Driven Diffuse Large B-Cell Lymphoma
收藏 引用
BLOOD 2021年 138卷 713-713页
作者: Mandato, Elisa Sun, Yanbo Shanmugam, Vignesh Choi, Il-Kyu Wright, Kyle T. Redd, Robert A. Lawton, Lee N. Neuberg, Donna S. Rodig, Scott J. Zhang, Baochun Shipp, Margaret A. Department of Medical Oncology Dana-Farber Cancer Institute Boston MA Department of Pathology Brigham and Women's Hospital Boston MA Broad Institute of MIT and Harvard Cancer Program Cambridge MA Department of Pathology University of Oklahoma Health Sciences Center Oklahoma City OK Department of Data Science Dana-Farber Cancer Institute Boston MA Department of Data Science Dana-Farber Cancer Institute Boston Department of Pathology Brigham & Women's Hospital Boston MA Department of Medical Oncology Dana Farber Cancer Institute Boston MA
713
来源: 评论
Phase I Study of Ixazomib Added to Chemotherapy in the Treatment of Acute Lymphoblastic Leukemia in Older Adults
收藏 引用
BLOOD 2020年 136卷 41-42页
作者: Amrein, Philip C. Ballen, Karen K. Stevenson, Kristen E. Blonquist, Traci M. Brunner, Andrew M. Hobbs, Gabriela S. Hock, Hanno R. McAfee, Steven L. Moran, Jenna A. Bergeron, Meghan Foster, Julia E. Bertoli, Christina McGregor, Kristin Macrae, Molly Burke, Meghan Behnan, Tanya T. Som, Tina T. Ramos, Aura Y. Vartanian, Megan K. Story, Jennifer Lombardi Connolly, Christine Graubert, Timothy A. Neuberg, Donna S. Fathi, Amir T. Leukemia Center/MGH Cancer Center Massachusetts General Hospital Belmont MA Division of Hematology/Oncology University of Virginia Health Center Charlottesville VA Department of Data Science Dana-Farber Cancer Institute Boston MA Data Science Dana-Farber Cancer Institute Boston MA Center for Leukemia Massachusetts General Hospital Boston MA Leukemia Center Massachusetts General Hospital Boston MA Leukemia Center Massachusetts General Hospital / Harvard Medical School Boston MA Massachusetts General Hospital Blood and Marrow Transplant Program Boston MA Leukemia Center Massachusetts General Hospital Center for Leukemia Cambridge MA
Introduction: While progress has been made in the treatment of childhood leukemia, the outlook for patients >60 years of age with acute lymphoblastic leukemia (ALL) is poor with complete remission rates (CR) of app...
来源: 评论
Macrophages direct location-dependent recall of B cell memory to vaccination
收藏 引用
Cell 2025年
作者: Dhenni, Rama Hoppé, Alexandra Carey Reynaldi, Arnold Kyaw, Wunna Handoko, Nathalie Tricia Grootveld, Abigail K. Keith, Yuki Honda Bhattacharyya, Nayan Deger Ahel, Holly I. Telfser, Aiden Josiah McCorkindale, Andrew N. Yazar, Seyhan Bui, Christina H.T. Smith, James T. Khoo, Weng Hua Boyd, Mollie Obeid, Solange Milner, Brad Starr, Mitchell Brilot, Fabienne Milogiannakis, Vanessa Akerman, Anouschka Aggarwal, Anupriya Davenport, Miles P. Deenick, Elissa K. Chaffer, Christine L. Croucher, Peter I. Brink, Robert Goldstein, Leonard D. Cromer, Deborah Turville, Stuart G. Kelleher, Anthony D. Venturi, Vanessa Munier, C. Mee Ling Phan, Tri Giang Precision Immunology Program Garvan Institute of Medical Research Sydney NSW Australia St. Vincent's Healthcare Clinical Campus School of Clinical Medicine Faculty of Medicine and Health UNSW Sydney Kensington Sydney NSW Australia Immunovirology and Pathogenesis Program Kirby Institute UNSW Sydney Sydney NSW Australia Infection Analytics Program Kirby Institute UNSW Sydney Sydney NSW Australia Data Science Platform Garvan Institute of Medical Research Sydney 2010 NSW Australia St. Vincent's Hospital Sydney Sydney NSW Australia Cancer Plasticity and Dormancy Program The Kinghorn Cancer Centre Garvan Institute of Medical Research Sydney 2010 NSW Australia St. Vincent's Centre for Applied Medical Research Sydney NSW Australia Immune Biotherapies Program Garvan Institute of Medical Research Sydney 2010 NSW Australia Brain Autoimmunity Group Kids Neuroscience Centre The Children's Hospital at Westmead Faculty of Medicine and Health School of Medical Sciences Sydney NSW Australia School of Medical Science Faculty of Medicine and Health University of Sydney Sydney NSW Australia
Vaccines generate long-lived plasma cells and memory B cells (Bmems) that may re-enter secondary germinal centers (GCs) to further mutate their B cell receptor upon boosting and re-exposure to antigen. We show in mous... 详细信息
来源: 评论
EMBEDDING SPACE AUGMENTATION FOR WEAKLY SUPERVISED LEARNING IN WHOLE-SLIDE IMAGES
arXiv
收藏 引用
arXiv 2022年
作者: Zaffar, Imaad Jaume, Guillaume Rajpoot, Nasir Mahmood, Faisal Department of Computer Science University College London United Kingdom Department of Pathology Brigham and Women's Hospital Harvard Medical School BostonMA United States Department of Pathology Massachusetts General Hospital Harvard Medical School BostonMA United States Cancer Program Broad Institute of Harvard and MIT CambridgeMA United States Data Science Program Dana-Farber Cancer Institute BostonMA United States Tissue Image Analytics Centre Department of Computer Science University of Warwick Coventry United Kingdom Department of Pathology University Hospitals Coventry and Warwickshire NHS Trust Coventry United Kingdom The Alan Turing Institute London United Kingdom
Multiple Instance Learning (MIL) is a widely employed framework for learning on gigapixel whole-slide images (WSIs) from WSI-level annotations. In most MIL based analytical pipelines for WSI-level analysis, the WSIs a... 详细信息
来源: 评论
Biomedical data and AI
收藏 引用
science China Life sciences 2025年 第5期68卷 1536-1540页
作者: Hao Xu Shibo Zhou Zefeng Zhu Vincenzo Vitelli Liangyi Chen Ziwei Dai Ning Yang Luhua Lai Shengyong Yang Sergey Ovchinnikov Zhuoran Qiao Sirui Liu Chen Song Jianfeng Pei Han Wen Jianfeng Feng Yaoyao Zhang Zhengwei Xie Yang-Yu Liu Zhiyuan Li Fulai Jin Hao Li Mohammad Lotfollahi Xuegong Zhang Ge Yang Shihua Zhang Ge Gao Pulin Li Qi Liu Jing-Dong Jackie Han Peking-Tsinghua Center for Life Sciences (CLS) Academy for Advanced Interdisciplinary StudiesPeking University Center for Quantitative Biology (CQB) Academy for Advanced Interdisciplinary StudiesPeking University Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program Academy for Advanced Interdisciplinary StudiesPeking University Department of Physics University of Chicago School of Life Sciences Southern University of Science and Technology Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies College of Chemistry and Molecular Engineering Peking University Department of Biotherapy Cancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan University Department of Biology Massachusetts Institute of Technology Lambic Therapeutics Inc. Changping Laboratory Al for Science Institute Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Fudan University Department of Obstetrics and Gynecology West China Second University HospitalSichuan University Peking University International Cancer Institute and Peking University-Yunnan Baiyao International Medical Institute and State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking University Health Science CenterPeking University Channing Division of Network Medicine Department of MedicineBrigham and Women's Hospital and Harvard Medical School Center for Artificial Intelligence and Modeling the Carl R.Woese Institute for Genomic BiologyUniversity of Illinois Urbana-Champaign Department of Genetics and Genome Sciences School of Medicine and Department of Computer and Data Sciences and Department of Population and Quantitative Health SciencesCase Western Reserve University Department of Biochemistry and Biophysics University of California Sanger Institute Department of Automation Tsinghua University State Key Laboratory of Multimodal Artificial Intelligence Systems I
The development of artificial intelligence(AI) and the mining of biomedical data complement each other. From the direct use of computer vision results to analyze medical images for disease screening, to now integratin...
来源: 评论
Molecular-driven Foundation Model for Oncologic Pathology
arXiv
收藏 引用
arXiv 2025年
作者: Vaidya, Anurag Zhang, Andrew Jaume, Guillaume Song, Andrew H. Ding, Tong Wagner, Sophia J. Lu, Ming Y. Doucet, Paul Robertson, Harry Almagro-Pérez, Cristina Chen, Richard J. ElHarouni, Dina Ayoub, Georges Bossi, Connor Ligon, Keith L. Gerber, Georg Le, Long Phi Mahmood, Faisal Department of Pathology Brigham and Women’s Hospital Harvard Medical School BostonMA United States Department of Pathology Massachusetts General Hospital Harvard Medical School BostonMA United States Cancer Program Broad Institute of Harvard and MIT CambridgeMA United States Health Sciences and Technology Harvard-MIT CambridgeMA United States Harvard John A. Paulson School of Engineering and Applied Sciences Harvard University CambridgeMA United States Helmholtz Munich – German Research Center for Environment and Health Munich Germany School of Computation Information and Technology TUM Munich Germany CambridgeMA United States Sydney Precision Data Science Center The University of Sydney CamperdownNSW Australia Department of Oncologic Pathology Dana-Farber Cancer Institute BostonMA02215 United States Department of Pathology Boston Children’s Hospital BostonMA02115 United States Harvard Data Science Initiative Harvard University CambridgeMA United States
Foundation models are reshaping computational pathology by enabling transfer learning, where models pre-trained on vast datasets can be adapted for downstream diagnostic, prognostic, and therapeutic response tasks. De... 详细信息
来源: 评论
The exposome and pancreatic cancer, lifestyle and environmental risk factors for PDAC
收藏 引用
Seminars in cancer Biology 2025年 113卷 100-129页
作者: Peduzzi, Giulia Archibugi, Livia Farinella, Riccardo de Leon Pisani, Ruggero Ponz Vodickova, Ludmila Vodicka, Pavel Kraja, Bledar Sainz, Juan Bars-Cortina, David Daniel, Neil Silvestri, Roberto Uysal-Onganer, Pinar Landi, Stefano Dulińska-Litewka, Joanna Comandatore, Annalisa Campa, Daniele Hughes, David J. Rizzato, Cosmeri Department of Biology University of Pisa Pisa Italy Pancreato-Biliary Endoscopy and Endosonography Division Pancreas Translational and Clinical Research Center IRCCS Ospedale San Raffaele Milan Italy Biomedical Center Martin Bioinformatic Center Comenius University in Bratislava Jessenius Faculty of Medicine in Martin Slovakia Faculty of Medicine and Biomedical Center in Pilsen Charles University Pilsen Czech Republic University Clinic of Gastrohepatology University Hospital Center Mother Teresa Tirana Albania Department of Biochemistry and Molecular Biology University of Granada Granada Spain Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) Madrid 28029 Spain GENYO. Centre for Genomics and Oncological Research. Genomic Oncology department Granada Spain Instituto de Investigación Biosanitaria Ibs.Granada Granada Spain Institut Català d'Oncologia (ICO) IDIBELL Unit of Biomarkers and Susceptibility (UBS) Oncology Data Analytics Program (ODAP) Catalan Institute of Oncology (ICO) L′Hospitalet del Llobregat Barcelona Spain Institut Català d'Oncologia (ICO) IDIBELL ONCOBELL Program Bellvitge Biomedical Research Institute (IDIBELL) L′Hospitalet de Llobregat Barcelona Spain Molecular Epidemiology of Cancer Group UCD Conway Institute School of Biomolecular and Biomedical Science University College Dublin Dublin Ireland Cancer Mechanisms and Biomarkers Research Group School of Life Sciences University of Westminster London United Kingdom Chair of Medical Biochemistry Medical College Jagiellonian University Krakow Poland General Surgery Unit Department of Translational Research and New Technologies in Medicine and Surgery University of Pisa Italy
Pancreatic cancer (PC), particularly pancreatic ductal adenocarcinoma (PDAC), is a significant global health issue with high mortality rates. PDAC, though only 3 % of cancer diagnoses, causes 7 % of cancer deaths due ... 详细信息
来源: 评论