咨询与建议

限定检索结果

文献类型

  • 319 篇 期刊文献
  • 172 篇 会议

馆藏范围

  • 491 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 340 篇 工学
    • 254 篇 计算机科学与技术...
    • 225 篇 软件工程
    • 63 篇 信息与通信工程
    • 37 篇 生物工程
    • 26 篇 电气工程
    • 26 篇 控制科学与工程
    • 23 篇 电子科学与技术(可...
    • 22 篇 光学工程
    • 16 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 10 篇 网络空间安全
    • 9 篇 安全科学与工程
    • 8 篇 机械工程
    • 7 篇 环境科学与工程(可...
  • 177 篇 理学
    • 90 篇 数学
    • 60 篇 物理学
    • 41 篇 生物学
    • 39 篇 统计学(可授理学、...
    • 14 篇 化学
    • 13 篇 地球物理学
    • 9 篇 系统科学
  • 135 篇 管理学
    • 105 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 15 篇 医学
    • 13 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 11 篇 法学
    • 10 篇 社会学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 4 篇 文学
  • 2 篇 教育学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 31 篇 semantics
  • 16 篇 deep learning
  • 13 篇 information retr...
  • 12 篇 generative adver...
  • 12 篇 training
  • 11 篇 graph neural net...
  • 9 篇 convolution
  • 9 篇 knowledge graph
  • 9 篇 forecasting
  • 8 篇 feature extracti...
  • 7 篇 learning systems
  • 7 篇 machine learning
  • 6 篇 task analysis
  • 6 篇 image segmentati...
  • 6 篇 computational li...
  • 6 篇 natural language...
  • 5 篇 surveys
  • 5 篇 reinforcement le...
  • 5 篇 big data
  • 5 篇 prototypes

机构

  • 148 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 63 篇 cas key laborato...
  • 27 篇 cas key lab of n...
  • 22 篇 university of am...
  • 21 篇 cas key lab of n...
  • 21 篇 school of comput...
  • 17 篇 data intelligenc...
  • 12 篇 institute for ai...
  • 11 篇 baidu inc
  • 10 篇 cas key laborato...
  • 10 篇 peng cheng labor...
  • 9 篇 key lab. of inte...
  • 9 篇 school of comput...
  • 9 篇 haihe lab of ita...
  • 9 篇 zhejiang lab
  • 9 篇 institute of com...
  • 9 篇 tianjin key labo...
  • 8 篇 linke lab school...
  • 7 篇 cas key laborato...

作者

  • 176 篇 cheng xueqi
  • 147 篇 guo jiafeng
  • 56 篇 zhang ruqing
  • 54 篇 fan yixing
  • 49 篇 lan yanyan
  • 43 篇 shen huawei
  • 30 篇 pang liang
  • 26 篇 jin xiaolong
  • 26 篇 bi keping
  • 22 篇 cao qi
  • 21 篇 de rijke maarten
  • 19 篇 xu jun
  • 18 篇 chen wei
  • 17 篇 xueqi cheng
  • 15 篇 li zixuan
  • 15 篇 guan saiping
  • 13 篇 sun xiaoming
  • 13 篇 bai long
  • 10 篇 xiaolong jin
  • 10 篇 huang qingming

语言

  • 452 篇 英文
  • 36 篇 其他
  • 3 篇 中文
检索条件"机构=Cas Key Lab of Network Data Science and Technology"
491 条 记 录,以下是11-20 订阅
排序:
Generative Retrieval for Book Search  25
Generative Retrieval for Book Search
收藏 引用
Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and data Mining V.1
作者: Yubao Tang Ruqing Zhang Jiafeng Guo Maarten de Rijke Shihao Liu Shuaiqiang Wang Dawei Yin Xueqi Cheng CAS Key Lab of Network Data Science and Technology ICT CAS Beijing China University of the Chinese Academy of Sciences Beijing China & University of Amsterdam Amsterdam Netherlands CAS Key Lab of Network Data Science and Technology ICT CAS Beijing China & University of Chinese Academy of Sciences Beijing China University of Amsterdam Amsterdam Netherlands Baidu Inc. Beijing China
In book search, relevant book information should be returned in response to a query. Books contain complex, multi-faceted information such as metadata, outlines, and main text, where the outline provides hierarchical ... 详细信息
来源: 评论
CLIPURE: PURIFICATION IN LATENT SPACE VIA CLIP FOR ADVERSARIALLY ROBUST ZERO-SHOT CLASSIFICATION
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Mingkun Bi, Keping Chen, Wei Guo, Jiafeng Cheng, Xueqi State Key Lab of AI Safety CAS Key Lab of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
In this paper, we aim to build an adversarially robust zero-shot image classifier. We ground our work on CLIP, a vision-language pre-trained encoder model that can perform zero-shot classification by matching an image... 详细信息
来源: 评论
Explainable and Layout-Aware Timing Prediction  24
Explainable and Layout-Aware Timing Prediction
收藏 引用
43rd International Conference on Computer-Aided Design, ICCAD 2024
作者: Lyu, Zhengyang Li, Xiaqing Du, Zidong Guo, Qi University of Science and Technology of China Hefei China State Key Lab of Processors Institute of Computing Techology CAS Beijing China Shanghai Innovation Center for Processor Technologies Shanghai China Ministry of Education Key Lab for Big Data and AI in Transportation Beijing Jiaotong University Beijing China
Accurate and fast timing prediction at early design stages is crucial for achieving timing closure in very-large-scale integration (VLSI) design. Machine learning (ML) based approaches have been widely adopted for tim... 详细信息
来源: 评论
NeuVSA: A Unified and Efficient Accelerator for Neural Vector Search
NeuVSA: A Unified and Efficient Accelerator for Neural Vecto...
收藏 引用
IEEE Symposium on High-Performance Computer Architecture
作者: Ziming Yuan Lei Dai Wen Li Jie Zhang Shengwen Liang Ying Wang Cheng Liu Huawei Li Xiaowei Li Jiafeng Guo Peng Wang Renhai Chen Gong Zhang State Key Lab of Processors Institute of Computing TechnologyCAS University of Chinese Academy of Sciences School of Computer and Information Technology Shanxi University School of Computer Science Peking University Zhongguancun National Laboratory Beijing Key Lab of Network Data Science and Technology Institute of Computing Technology CAS Huawei Technologies Co. Ltd. China
Neural Vector Search (NVS) has exhibited superior search quality over traditional key-based strategies for information retrieval tasks. An effective NVS architecture requires high recall, low latency, and high through... 详细信息
来源: 评论
TrustRAG: An Information Assistant with Retrieval Augmented Generation
arXiv
收藏 引用
arXiv 2025年
作者: Fan, Yixing Yan, Qiang Wang, Wenshan Guo, Jiafeng Zhang, Ruqing Cheng, Xueqi Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Retrieval-Augmented Generation (RAG) has emerged as a crucial technique for enhancing large models with real-time and domain-specific knowledge. While numerous improvements and open-source tools have been proposed to ... 详细信息
来源: 评论
Adversarial training via multi-guidance and historical memory enhancement
收藏 引用
Neurocomputing 2025年 619卷
作者: Zhao, Chenyu Qian, Yaguan Wang, Bin Gu, Zhaoquan Ji, Shouling Wang, Wei Zhang, Yanchun School of Science Zhejiang University of Science and Technology China Network and Data Security China China School of Computer Science and Technology Zhejiang University China Education Key Lab for Intelligent Networks and Network Security Xi'an Jiaotong University China Institute for Sustainable Industries and Liveable Cities Victoria University Australia
Deep neural networks (DNNs) are often susceptible to the influence of adversarial examples, potentially leading to severe security issues. Adversarial training stands out as one of the most effective defenses. In this... 详细信息
来源: 评论
A Model-Agnostic Hierarchical Framework Towards Trajectory Prediction
收藏 引用
Journal of Computer science and technology 2025年 第2期40卷 322-339页
作者: Qian, Tang-Wen Wang, Yuan Xu, Yong-Jun Zhang, Zhao Wu, Lin Qiu, Qiang Wang, Fei Domain-Oriented Intelligent System Research Center Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100190 China CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China
Predicting the future trajectories of multiple agents is essential for various applications in real life, such as surveillance systems, autonomous driving, and social robots. The trajectory prediction task is influenc... 详细信息
来源: 评论
Wi-SFDAGR: WiFi-Based Cross-Domain Gesture Recognition via Source-Free Domain Adaptation
收藏 引用
IEEE Internet of Things Journal 2025年
作者: Yan, Huan Zhang, Xiang Huang, Jinyang Feng, Yuanhao Li, Meng Wang, Anzhi Ou, Weihua Wang, Hongbing Liu, Zhi Guizhou Normal University School of Big Data and Computer Science Guiyang550025 China University of Science and Technology of China CAS Key Laboratory of Electromagnetic Space Information Hefei230026 China Hefei University of Technology School of Computer and Information Hefei230601 China The University of Electro-Communications Department of Computer and Network Engineering Tokyo1828585 Japan
WiFi Channel State Information (CSI)-based gesture recognition offers unique advantages, including cost-effectiveness and enhanced privacy protection, and has garnered significant attention in recent years. However, e... 详细信息
来源: 评论
Bridging Queries and Tables through Entities in Table Retrieval
arXiv
收藏 引用
arXiv 2025年
作者: Li, Da Bi, Keping Guo, Jiafeng Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS China University of Chinese Academy of Sciences Beijing China
Table retrieval is essential for accessing information stored in structured tabular formats;however, it remains less explored than text retrieval. The content of the table primarily consists of phrases and words, whic... 详细信息
来源: 评论
Sensing-Communication-Computation Integration for Federated Edge Learning with Controllable Model Dropout
收藏 引用
IEEE Internet of Things Journal 2025年
作者: Jiao, Xiang Zhu, Guangxu Jiang, Wei Chen, Li Luo, Wu Wen, Dingzhu State Key Laboratory of Advanced Optical Communication Systems and Networks School of Electronics Peking University Beijing China Shenzhen Research Institute of Big Data Shenzhen China The State Key Laboratory of Advanced Optical Communication Systems and Networks School of Electronics Peking University Beijing China The CAS Key Laboratory of Wireless Optical Communication University of Science and Technology of China Hefei China Network Intelligence Center School of Information Science and Technology ShanghaiTech University Shanghai China
FEderated Edge Learning (FEEL) is an advanced paradigm in edge artificial intelligence, enabling privacy-preserving collaborative model training through periodic communication between edge devices and a central server... 详细信息
来源: 评论