咨询与建议

限定检索结果

文献类型

  • 317 篇 期刊文献
  • 177 篇 会议

馆藏范围

  • 494 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 338 篇 工学
    • 251 篇 计算机科学与技术...
    • 223 篇 软件工程
    • 63 篇 信息与通信工程
    • 37 篇 生物工程
    • 26 篇 控制科学与工程
    • 25 篇 电气工程
    • 23 篇 光学工程
    • 23 篇 电子科学与技术(可...
    • 16 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 11 篇 生物医学工程(可授...
    • 10 篇 网络空间安全
    • 9 篇 安全科学与工程
    • 8 篇 机械工程
    • 8 篇 环境科学与工程(可...
  • 176 篇 理学
    • 90 篇 数学
    • 60 篇 物理学
    • 41 篇 生物学
    • 40 篇 统计学(可授理学、...
    • 14 篇 化学
    • 13 篇 地球物理学
    • 8 篇 系统科学
  • 134 篇 管理学
    • 104 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 14 篇 医学
    • 12 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 12 篇 法学
    • 10 篇 社会学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 4 篇 文学
  • 2 篇 教育学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 30 篇 semantics
  • 16 篇 deep learning
  • 13 篇 information retr...
  • 12 篇 generative adver...
  • 12 篇 training
  • 11 篇 graph neural net...
  • 9 篇 convolution
  • 9 篇 knowledge graph
  • 9 篇 forecasting
  • 8 篇 feature extracti...
  • 7 篇 learning systems
  • 7 篇 machine learning
  • 6 篇 task analysis
  • 6 篇 image segmentati...
  • 6 篇 computational li...
  • 6 篇 natural language...
  • 5 篇 surveys
  • 5 篇 reinforcement le...
  • 5 篇 big data
  • 5 篇 prototypes

机构

  • 146 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 62 篇 cas key laborato...
  • 27 篇 cas key lab of n...
  • 22 篇 university of am...
  • 21 篇 school of comput...
  • 20 篇 cas key lab of n...
  • 17 篇 data intelligenc...
  • 12 篇 institute for ai...
  • 11 篇 key lab. of inte...
  • 11 篇 school of comput...
  • 11 篇 baidu inc
  • 10 篇 cas key laborato...
  • 10 篇 peng cheng labor...
  • 10 篇 zhejiang lab
  • 9 篇 institute of com...
  • 9 篇 tianjin key labo...
  • 8 篇 haihe lab of ita...
  • 8 篇 linke lab school...
  • 7 篇 cas key laborato...

作者

  • 176 篇 cheng xueqi
  • 146 篇 guo jiafeng
  • 55 篇 zhang ruqing
  • 55 篇 fan yixing
  • 49 篇 lan yanyan
  • 43 篇 shen huawei
  • 30 篇 pang liang
  • 26 篇 jin xiaolong
  • 26 篇 bi keping
  • 22 篇 cao qi
  • 20 篇 de rijke maarten
  • 20 篇 xueqi cheng
  • 19 篇 xu jun
  • 18 篇 chen wei
  • 15 篇 li zixuan
  • 15 篇 guan saiping
  • 13 篇 sun xiaoming
  • 13 篇 bai long
  • 10 篇 xiaolong jin
  • 10 篇 huang qingming

语言

  • 455 篇 英文
  • 36 篇 其他
  • 3 篇 中文
检索条件"机构=Cas Key Lab of Network Data Science and Technology"
494 条 记 录,以下是201-210 订阅
排序:
Leveraging LLMs for Utility-Focused Annotation: Reducing Manual Effort for Retrieval and RAG
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Hengran Tang, Minghao Bi, Keping Guo, Jiafeng Liu, Shihao Shi, Daiting Yin, Dawei Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS University of Chinese Academy of Sciences Beijing China Baidu Inc Beijing China Nankai University Tianjin China
Retrieval models typically rely on costly human-labeled query-document relevance annotations for training and evaluation. To reduce this cost and leverage the potential of Large Language Models (LLMs) in relevance jud... 详细信息
来源: 评论
An RTDNN-Based Hybrid Precoding and Combining Joint Optimization Algorithm for MUPC-MIMO Systems
IEEE Transactions on Green Communications and Networking
收藏 引用
IEEE Transactions on Green Communications and networking 2025年
作者: Liu, Fulai Liu, Yubiao Yang, Xianghuan Duan, Zhuoyao Shi, Baozhu Ji, Li Du, Ruiyan Northeastern University at Qinhuangdao Lab of Key Technology of Millimeter-wave Large-scale MIMO System Hebei Key Laboratory of Marine Perception Network and Data Processing Qinhuangdao066004 China Hebei University College of Mathematics and Information Science Baoding071002 China Northeastern University School of Computer Science and Engineering Shenyang110819 China Qinhuangdao Vocational and Technical College Qinhuangdao066100 China School of Computer Science and Engineering Northeastern University Shenyang110004 China
To achieve a satisfactory balance between energy efficiency (EE) and spectral efficiency (SE) for hybrid precoding and combining (HPC), this paper presents a two-stage joint optimization HPC algorithm based on residua... 详细信息
来源: 评论
Gradient sparsification for efficient wireless federated learning with differential privacy
收藏 引用
science China(Information sciences) 2024年 第4期67卷 272-288页
作者: Kang WEI Jun LI Chuan MA Ming DING Feng SHU Haitao ZHAO Wen CHEN Hongbo ZHU School of Electronic and Optical Engineering Nanjing University of Science and Technology Zhejiang Lab Key Laboratory of Computer Network and Information Integration(Southeast University) Ministry of Education Data61 Commonwealth Scientific and Industrial Research Organisation School of Information and Communication Engineering Hainan University School of Communications and Information Engineering Nanjing University of Posts and Telecommunications School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University
Federated learning(FL) enables distributed clients to collaboratively train a machine learning model without sharing raw data with each other. However, it suffers from the leakage of private information from uploading... 详细信息
来源: 评论
Learning to truncate ranked lists for information retrieval
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Chen Zhang, Ruqing Guo, Jiafeng Fan, Yixing Lan, Yanyan Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Ranked list truncation is of critical importance in a variety of professional information retrieval applications such as patent search or legal search. The goal is to dynamically determine the number of returned docum... 详细信息
来源: 评论
A linguistic study on relevance modeling in information retrieval
arXiv
收藏 引用
arXiv 2021年
作者: Fan, Yixing Guo, Jiafeng Ma, Xinyu Zhang, Ruqing Lan, Yanyan Cheng, Xueqi University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Relevance plays a central role in information retrieval (IR), which has received extensive studies starting from the 20th century. The definition and the modeling of relevance has always been critical challenges in bo... 详细信息
来源: 评论
FedMatch: Federated learning over heterogeneous question answering data
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Jiangui Zhang, Ruqing Guo, Jiafeng Fan, Yixing Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Question Answering (QA), a popular and promising technique for intelligent information access, faces a dilemma about data as most other AI techniques. On one hand, modern QA methods rely on deep learning models which ... 详细信息
来源: 评论
B-PROP: Bootstrapped Pre-training with Representative Words Prediction for Ad-hoc Retrieval
arXiv
收藏 引用
arXiv 2021年
作者: Ma, Xinyu Guo, Jiafeng Zhang, Ruqing Fan, Yixing Li, Yingyan Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Pre-training and fine-tuning have achieved remarkable success in many downstream natural language processing (NLP) tasks. Recently, pre-training methods tailored for information retrieval (IR) have also been explored,... 详细信息
来源: 评论
INMO: A Model-Agnostic and Scalable Module for Inductive Collaborative Filtering
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Yunfan Cao, Qi Shen, Huawei Tao, Shuchang Cheng, Xueqi Data Intelligence System Research Center Institute of Computing Technology CAS University of Chinese Academy of Sciences Beijing China Data Intelligence System Research Center Institute of Computing Technology CAS China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology CAS University of Chinese Academy of Sciences Beijing China
Collaborative filtering is one of the most common scenarios and popular research topics in recommender systems. Among existing methods, latent factor models, i.e., learning a specific embedding for each user/item by r... 详细信息
来源: 评论
Dear-DIA^(XMBD): Deep Autoencoder Enables Deconvolution of data-Independent Acquisition Proteomics
收藏 引用
Research 2024年 第1期6卷 707-720页
作者: Qingzu He Chuan-Qi Zhong Xiang Li Huan Guo Yiming Li Mingxuan Gao Rongshan Yu Xianming Liu Fangfei Zhang Donghui Guo Fangfu Ye Tiannan Guo Jianwei Shuai Jiahuai Han Department of Physics and Fujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen 361005China Oujiang Laboratory(Zhejiang Lab for Regenerative Medicine Vision and Brain Health)and Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang 325001China School of Life Sciences Xiamen UniversityXiamen 361102China State Key Laboratory of Cellular Stress Biology Innovation Center for Cell Signaling NetworkXiamen 361102China Department of Computer Science Xiamen UniversityXiamen 361005China National Institute for Data Science in Health and Medicine School of MedicineXiamen UniversityXiamen 361102China Bruker(Beijing)Scientific Technology Co.Ltd. BeijingChina Westlake Laboratory of Life Sciences and Biomedicine Key Laboratory of Structural Biology of Zhejiang ProvinceSchool of Life SciencesWestlake University18 Shilongshan RoadHangzhou 310024China Institute of Basic Medical Sciences Westlake Institute for Advanced Study18 Shilongshan RoadHangzhou 310024China Westlake Omics Ltd. Yunmeng Road 1HangzhouChina Department of Electronic Engineering Xiamen UniversityXiamen 361005China
data-independent acquisition(DIA)technology for protein identification from mass spectrometry and related algorithms is developing *** spectrum-centric analysis of DIA data without the use of spectra library from data... 详细信息
来源: 评论
Disentangled Noisy Correspondence Learning
arXiv
收藏 引用
arXiv 2024年
作者: Dang, Zhuohang Luo, Minnan Wang, Jihong Jia, Chengyou Han, Haochen Wan, Herun Dai, Guang Chang, Xiaojun Wang, Jingdong The School of Computer Science and Technology The Ministry of Education Key Laboratory of Intelligent Networks and Network Security The Shaanxi Province Key Laboratory of Big Data Knowledge Engineering Xi'an Jiaotong University Shaanxi Xi'An710049 China SGIT AI Lab State Grid Shaanxi Electric Power Company Limited State Grid Corporation of China Shaanxi China The School of Information Science and Technology University of Science and Technology China United Arab Emirates The Baidu Inc China
Cross-modal retrieval is crucial in understanding latent correspondences across modalities. However, existing methods implicitly assume well-matched training data, which is impractical as real-world data inevitably in... 详细信息
来源: 评论