咨询与建议

限定检索结果

文献类型

  • 319 篇 期刊文献
  • 179 篇 会议

馆藏范围

  • 498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 339 篇 工学
    • 253 篇 计算机科学与技术...
    • 225 篇 软件工程
    • 63 篇 信息与通信工程
    • 37 篇 生物工程
    • 27 篇 控制科学与工程
    • 24 篇 电气工程
    • 22 篇 光学工程
    • 22 篇 电子科学与技术(可...
    • 16 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 10 篇 网络空间安全
    • 9 篇 安全科学与工程
    • 8 篇 机械工程
    • 8 篇 环境科学与工程(可...
  • 177 篇 理学
    • 90 篇 数学
    • 60 篇 物理学
    • 41 篇 生物学
    • 40 篇 统计学(可授理学、...
    • 14 篇 化学
    • 13 篇 地球物理学
    • 8 篇 系统科学
  • 135 篇 管理学
    • 105 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 14 篇 医学
    • 12 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 12 篇 法学
    • 10 篇 社会学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 4 篇 文学
  • 2 篇 教育学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 30 篇 semantics
  • 16 篇 deep learning
  • 13 篇 information retr...
  • 12 篇 training
  • 11 篇 generative adver...
  • 11 篇 graph neural net...
  • 9 篇 convolution
  • 9 篇 knowledge graph
  • 9 篇 forecasting
  • 8 篇 feature extracti...
  • 7 篇 learning systems
  • 7 篇 machine learning
  • 6 篇 reinforcement le...
  • 6 篇 task analysis
  • 6 篇 image segmentati...
  • 6 篇 computational li...
  • 6 篇 natural language...
  • 5 篇 surveys
  • 5 篇 big data
  • 5 篇 prototypes

机构

  • 150 篇 university of ch...
  • 81 篇 cas key lab of n...
  • 63 篇 cas key laborato...
  • 28 篇 cas key lab of n...
  • 24 篇 university of am...
  • 22 篇 cas key lab of n...
  • 21 篇 school of comput...
  • 17 篇 data intelligenc...
  • 12 篇 institute for ai...
  • 11 篇 key lab. of inte...
  • 11 篇 school of comput...
  • 11 篇 baidu inc
  • 10 篇 cas key laborato...
  • 10 篇 peng cheng labor...
  • 10 篇 zhejiang lab
  • 9 篇 institute of com...
  • 9 篇 tianjin key labo...
  • 8 篇 linke lab school...
  • 7 篇 cas key laborato...
  • 7 篇 institute of qua...

作者

  • 180 篇 cheng xueqi
  • 151 篇 guo jiafeng
  • 58 篇 zhang ruqing
  • 57 篇 fan yixing
  • 49 篇 lan yanyan
  • 43 篇 shen huawei
  • 30 篇 pang liang
  • 27 篇 jin xiaolong
  • 26 篇 bi keping
  • 22 篇 de rijke maarten
  • 22 篇 cao qi
  • 20 篇 xueqi cheng
  • 19 篇 xu jun
  • 18 篇 chen wei
  • 16 篇 li zixuan
  • 15 篇 guan saiping
  • 14 篇 bai long
  • 13 篇 sun xiaoming
  • 11 篇 liu yu-an
  • 10 篇 xiaolong jin

语言

  • 409 篇 英文
  • 86 篇 其他
  • 3 篇 中文
检索条件"机构=Cas Key Lab of Network Data Science and Technology"
498 条 记 录,以下是301-310 订阅
排序:
Ranking enhanced dialogue generation
arXiv
收藏 引用
arXiv 2020年
作者: Hao, Changying Pang, Liang Lan, Yanyan Sun, Fei Guo, Jiafeng Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Alibaba Group Beijing China
How to effectively utilize the dialogue history is a crucial problem in multi-turn dialogue generation. Previous works usually employ various neural network architectures (e.g., recurrent neural networks, attention me... 详细信息
来源: 评论
Noise-Tolerant Learning for Audio-Visual Action Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Han, Haochen Zheng, Qinghua Luo, Minnan Miao, Kaiyao Tian, Feng Chen, Yan The National Engineering Lab for Big Data Analytics Xi’an Jiaotong University Xi’an710049 China The School of Computer Science and Technology Xi’an Jiaotong University Xi’an710049 China The Key Laboratory of Intelligent Networks and Network Security Xi’an Jiaotong University Ministry of Education Xi’an710049 China The School of Cyber Science and Engineering Xi’an Jiaotong University Xi’an710049 China
Recently, video recognition is emerging with the help of multi-modal learning, which focuses on integrating distinct modalities to improve the performance or robustness of the model. Although various multi-modal learn... 详细信息
来源: 评论
Research on Knowledge Distillation of Generative Adversarial networks
Research on Knowledge Distillation of Generative Adversarial...
收藏 引用
data Compression Conference (DCC)
作者: Wei Wang Baohua Zhang Tao Cui Yimeng Chai Yue Li College of Computer Science KLMDASR Trusted AI System Lab Nankai University Tianjin China College of Computer Science Tianjin Key Lab of Network and Data Security Technology Nankai University Tianjin China NCMIS LSEC Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China
The compression of Generative Adversarial networks (GANs) has been an emerging study in recent years. However, conventional compression methods can hardly be applied to GANs due to the training process and optimizatio... 详细信息
来源: 评论
Better Pseudo-label: Joint Domain-aware label and Dual-classifier for Semi-supervised Domain Generalization
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Ruiqi Qi, Lei Shi, Yinghuan Gao, Yang State Key Laboratory for Novel Software Technology Nanjing University Nanjing China National Institute of Healthcare Data Science Nanjing University Nanjing China School of Computer Science and Engineering Key Lab of Computer Network and Information Integration Ministry of Education Southeast University Nanjing China
With the goal of directly generalizing trained model to unseen target domains, domain generalization (DG), a newly proposed learning paradigm, has attracted considerable attention. Previous DG models usually require a... 详细信息
来源: 评论
On the Relation between Quality-Diversity Evaluation and Distribution-Fitting Goal in Text Generation
arXiv
收藏 引用
arXiv 2020年
作者: Li, Jianing Lan, Yanyan Guo, Jiafeng Cheng, Xueqi CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
The goal of text generation models is to fit the underlying real probability distribution of text. For performance evaluation, quality and diversity metrics are usually applied. However, it is still not clear to what ... 详细信息
来源: 评论
ICT at TREC 2019: Fair Ranking Track  28
ICT at TREC 2019: Fair Ranking Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Wang, Meng Zhang, Haopeng Liang, Fuhuai Feng, Bin Zhao, Di CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
In this paper, we will introduce our work in the 2019 TREC fair ranking task. In temporal academic search, more and more people choose to pay attention to the fairness constraints of ranking. The purpose of this task ...
来源: 评论
Signal Feature Analysis of Contact Force at the Tip of a Flexible Ureteroscope  42
Signal Feature Analysis of Contact Force at the Tip of a Fle...
收藏 引用
42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
作者: Yinan, Deng Tangwen, Yang Shaotao, Dai Song, Guoli Beijing Jiaotong University Inst. of Info. Sci. and the Beijing Key Lab. of Advanced Information Science and Network Technology Beijing China Beijing Jiaotong University School of Electrical Engineering Beijing China Shenang Institute of Automation Cas State Key Laboratory of Robotics Shenyang China
This paper presents a signal analysis approach to identify the contact objects at the tip of a flexible ureteroscope. First, a miniature triaxial fiber optic sensor based on Fiber Bragg Grating(FBG) is devised to meas... 详细信息
来源: 评论
Optimization from Structured Samples for Coverage Functions
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Wei Sun, Xiaoming Zhang, Jialin Zhang, Zhijie Microsoft Research Asia Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China
We revisit the optimization from samples (OPS) model, which studies the problem of optimizing objective functions directly from the sample data. Previous results showed that we cannot obtain a constant approximation r... 详细信息
来源: 评论
Slimmable generative adversarial networks
arXiv
收藏 引用
arXiv 2020年
作者: Hou, Liang Yuan, Zehuan Huang, Lei Shen, Huawei Cheng, Xueqi Wang, Changhu CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences ByteDance AI Lab SKLSDE Institute of Artificial Intelligence Beihang University
Generative adversarial networks (GANs) have achieved remarkable progress in recent years, but the continuously growing scale of models makes them challenging to deploy widely in practical applications. In particular, ... 详细信息
来源: 评论
A Dual-Channel Framework for Sarcasm Recognition by Detecting Sentiment Conflict
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Yiyi Wang, Yequan Sun, Aixin Meng, Xuying Li, Jing Guo, Jiafeng CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Beijing Academy of Artificial Intelligence Beijing China School of Computer Science and Engineering Nanyang Technological University Singapore Singapore Institute of Computing Technology Chinese Academy of Sciences Beijing China Inception Institute of Artificial Intelligence Abu Dhabi United Arab Emirates
Sarcasm employs ambivalence, where one says something positive but actually means negative, and vice versa. The essence of sarcasm, which is also a sufficient and necessary condition, is the conflict between literal a...
来源: 评论