咨询与建议

限定检索结果

文献类型

  • 317 篇 期刊文献
  • 172 篇 会议

馆藏范围

  • 489 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 338 篇 工学
    • 251 篇 计算机科学与技术...
    • 223 篇 软件工程
    • 63 篇 信息与通信工程
    • 37 篇 生物工程
    • 26 篇 控制科学与工程
    • 25 篇 电气工程
    • 23 篇 光学工程
    • 23 篇 电子科学与技术(可...
    • 16 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 11 篇 生物医学工程(可授...
    • 10 篇 网络空间安全
    • 9 篇 安全科学与工程
    • 8 篇 机械工程
    • 8 篇 环境科学与工程(可...
  • 176 篇 理学
    • 90 篇 数学
    • 60 篇 物理学
    • 41 篇 生物学
    • 40 篇 统计学(可授理学、...
    • 14 篇 化学
    • 13 篇 地球物理学
    • 8 篇 系统科学
  • 134 篇 管理学
    • 104 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 14 篇 医学
    • 12 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 12 篇 法学
    • 10 篇 社会学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 4 篇 文学
  • 2 篇 教育学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 30 篇 semantics
  • 16 篇 deep learning
  • 13 篇 information retr...
  • 12 篇 generative adver...
  • 12 篇 training
  • 11 篇 graph neural net...
  • 9 篇 convolution
  • 9 篇 knowledge graph
  • 9 篇 forecasting
  • 8 篇 feature extracti...
  • 7 篇 learning systems
  • 7 篇 machine learning
  • 6 篇 task analysis
  • 6 篇 image segmentati...
  • 6 篇 computational li...
  • 6 篇 natural language...
  • 5 篇 surveys
  • 5 篇 reinforcement le...
  • 5 篇 big data
  • 5 篇 prototypes

机构

  • 146 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 62 篇 cas key laborato...
  • 27 篇 cas key lab of n...
  • 21 篇 school of comput...
  • 21 篇 university of am...
  • 20 篇 cas key lab of n...
  • 17 篇 data intelligenc...
  • 12 篇 institute for ai...
  • 11 篇 baidu inc
  • 10 篇 cas key laborato...
  • 10 篇 peng cheng labor...
  • 10 篇 zhejiang lab
  • 9 篇 key lab. of inte...
  • 9 篇 school of comput...
  • 9 篇 institute of com...
  • 9 篇 tianjin key labo...
  • 8 篇 haihe lab of ita...
  • 8 篇 linke lab school...
  • 7 篇 cas key laborato...

作者

  • 176 篇 cheng xueqi
  • 146 篇 guo jiafeng
  • 55 篇 zhang ruqing
  • 55 篇 fan yixing
  • 49 篇 lan yanyan
  • 43 篇 shen huawei
  • 30 篇 pang liang
  • 26 篇 jin xiaolong
  • 26 篇 bi keping
  • 22 篇 cao qi
  • 20 篇 de rijke maarten
  • 19 篇 xu jun
  • 18 篇 xueqi cheng
  • 18 篇 chen wei
  • 15 篇 li zixuan
  • 15 篇 guan saiping
  • 13 篇 sun xiaoming
  • 13 篇 bai long
  • 10 篇 xiaolong jin
  • 10 篇 huang qingming

语言

  • 450 篇 英文
  • 36 篇 其他
  • 3 篇 中文
检索条件"机构=Cas Key Lab of Network Data Science and Technology"
489 条 记 录,以下是341-350 订阅
排序:
Transformation driven visual reasoning
arXiv
收藏 引用
arXiv 2020年
作者: Hong, Xin Lan, Yanyan Pang, Liang Guo, Jiafeng Cheng, Xueqi CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Institute for AI Industry Research Tsinghua University Beijing China
This paper defines a new visual reasoning paradigm by introducing an important factor, i.e. transformation. The motivation comes from the fact that most existing visual reasoning tasks, such as CLEVR in VQA, are solel... 详细信息
来源: 评论
Video Anomaly Detection Using Open data Filter and Domain Adaptation
Video Anomaly Detection Using Open Data Filter and Domain Ad...
收藏 引用
IEEE Visual Communications and Image Processing (VCIP)
作者: Chen Zhang Guorong Li Li Su Weigang Zhang Qingming Huang School of Computer Science and Technology UCAS Beijing China Key Lab of Big Data Mining and Knowledge Management UCAS Beijing China Harbin Institute of Technology Weihai China Key Lab of Intelligent Information Processing ICT CAS Beijing China
Video anomaly detection is a very challenging task because of the rarity, openness, and the definition of the anomalies. Researchers pay more attention to the characteristics of anomalies and have proposed a variety o... 详细信息
来源: 评论
Pattern mining, semantic label identification and movement prediction using mobile phone data
Pattern mining, semantic label identification and movement p...
收藏 引用
8th International Conference on Advanced data Mining and Applications, ADMA 2012
作者: Xie, Rong Luo, Jun Yue, Yang Li, Qingquan Zou, Xiaoqing International School of Software Wuhan University Wuhan 430079 China Shenzhen Institutes of Advanced Technology CAS Shenzhen 518055 China Shenzhen Key Laboratory of High Performance Data Mining Shenzhen 518055 China Shenzhen University Shenzhen China State Key Lab. of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan 430079 China Faculty of Land Resource Engineering Kunming University of Science and Technology Kunming China
data collected from mobile phones have potential knowledge to provide with important behavior patterns of individuals. In this paper, we present approaches to discovering personal mobility and characteristics based on... 详细信息
来源: 评论
Boosting Connectivity in Retinal Vessel Segmentation via a Recursive Semantics-Guided network  23rd
Boosting Connectivity in Retinal Vessel Segmentation via a R...
收藏 引用
23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
作者: Xu, Rui Liu, Tiantian Ye, Xinchen Lin, Lin Chen, Yen-Wei DUT-RU International School of Information Science and Engineering Dalian University of Technology Dalian China DUT-RU Co-Research Center of Advanced ICT for Active Life Dalian China Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province Dalian China College of Software Dalian University of Technology Dalian China College of Information Science and Engineering Ritsumeikan University Kusatsu Japan Research Center of Healthcare Data Science Zhejiang Lab Hangzhou China
Many deep learning based methods have been proposed for retinal vessel segmentation, however few of them focus on the connectivity of segmented vessels, which is quite important for a practical computer-aided diagnosi... 详细信息
来源: 评论
Exploration of the Influence on Training Deep Learning Models by Watermarked Image dataset
Exploration of the Influence on Training Deep Learning Model...
收藏 引用
IEEE International Conference on Big data and Cloud Computing (BdCloud)
作者: Shiqin Liu Shiyuan Feng Jinxia Wu Wei Ren Weiqi Wang Wenwen Zheng School of Computer Science China University of Geosciences Wuhan China Key Laboratory of Network Assessment Technology CAS Chinese Academy of Sciences Beijing China Guizhou Provincial Key Laboratory of Public Big Data Guizhou University Guiyang China
Deep learning has achieved great success in various applications with the help of a large scale of datasets. As a result, sharing the valuable big data that can be applied to training deep learning models is of essent... 详细信息
来源: 评论
Reverse Perspective network for Perspective-Aware Object Counting
Reverse Perspective Network for Perspective-Aware Object Cou...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yifan Yang Guorong Li Zhe Wu Li Su Qingming Huang Nicu Sebe School of Computer Science and Technology UCAS Beijing China Key Lab of Big Data Mining and Knowledge Management UCAS Beijing China Key Lab of Intelligent Information Processing Institute of Computing Technology CAS Beijing China University of Trento Trento Italy
One of the critical challenges of object counting is the dramatic scale variations, which is introduced by arbitrary perspectives. We propose a reverse perspective network to solve the scale variations of input images... 详细信息
来源: 评论
A Hierarchy Method Based on LDA and SVM for News Classification
A Hierarchy Method Based on LDA and SVM for News Classificat...
收藏 引用
IEEE International Conference on data Mining Workshops (ICDM Workshops)
作者: Limeng Cui Fan Meng Yong Shi Minqiang Li An Liu Research Center on Fictitious Economy & Data Science Key Research Lab on Big Data Mining and Knowledge Management Beijing CAS China School of Managemt Tianjin University Tianjin China School of Computer Science & Technology Soochow University Suzhou China
He growth of the online data provides the user a access to information on the Internet but also creates the challenges to obtain the valuable knowledge. In this paper we focus on news text classification, which is mea... 详细信息
来源: 评论
Adversarial Learning data Augmentation for Graph Contrastive Learning in Recommendation
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Junjie Cao, Qi Xie, Ruobing Zhang, Shaoliang Xia, Feng Shen, Huawei Cheng, Xueqi Data Intelligence System Research Center Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China WeChat Tencent Beijing China CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Recently, Graph Neural networks (GNNs) achieve remarkable success in Recommendation. To reduce the influence of data sparsity, Graph Contrastive Learning (GCL) is adopted in GNN-based CF methods for enhancing performa... 详细信息
来源: 评论
Uncertainty calibration for ensemble-based debiasing methods
arXiv
收藏 引用
arXiv 2021年
作者: Xiong, Ruibin Chen, Yimeng Pang, Liang Cheng, Xueqi Ma, Zhiming Lan, Yanyan CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Baidu Inc Academy of Mathematics and Systems Science Chinese Academy of Sciences Data Intelligence System Research Center Institute of Computing Technology Chinese Academy of Sciences Institute for AI Industry Research Tsinghua University
Ensemble-based debiasing methods have been shown effective in mitigating the reliance of classifiers on specific dataset bias, by exploiting the output of a bias-only model to adjust the learning target. In this paper... 详细信息
来源: 评论
ProtoEM: A Prototype-Enhanced Matching Framework for Event Relation Extraction
arXiv
收藏 引用
arXiv 2023年
作者: Hu, Zhilei Li, Zixuan Xu, Daozhu Bai, Long Jin, Cheng Jin, Xiaolong Guo, Jiafeng Cheng, Xueqi CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China School of Computer Science and Technology University of Chinese Academy of Sciences China State Key Laboratory of Geo-Information Engineering Xi’an710054 China Xi’an Research Institute of Surveying and Mapping Xi’an710054 China
Event Relation Extraction (ERE) aims to extract multiple kinds of relations among events in texts. However, existing methods singly categorize event relations as different classes, which are inadequately capturing the... 详细信息
来源: 评论