咨询与建议

限定检索结果

文献类型

  • 321 篇 期刊文献
  • 173 篇 会议

馆藏范围

  • 494 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 343 篇 工学
    • 256 篇 计算机科学与技术...
    • 225 篇 软件工程
    • 64 篇 信息与通信工程
    • 37 篇 生物工程
    • 27 篇 控制科学与工程
    • 25 篇 电气工程
    • 24 篇 电子科学与技术(可...
    • 23 篇 光学工程
    • 16 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 10 篇 网络空间安全
    • 9 篇 安全科学与工程
    • 8 篇 机械工程
    • 8 篇 环境科学与工程(可...
  • 178 篇 理学
    • 91 篇 数学
    • 60 篇 物理学
    • 41 篇 生物学
    • 40 篇 统计学(可授理学、...
    • 14 篇 化学
    • 13 篇 地球物理学
    • 9 篇 系统科学
  • 134 篇 管理学
    • 104 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 16 篇 医学
    • 13 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 11 篇 法学
    • 10 篇 社会学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 4 篇 文学
  • 2 篇 教育学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 30 篇 semantics
  • 16 篇 deep learning
  • 13 篇 information retr...
  • 12 篇 generative adver...
  • 12 篇 training
  • 11 篇 graph neural net...
  • 9 篇 convolution
  • 9 篇 knowledge graph
  • 9 篇 forecasting
  • 8 篇 feature extracti...
  • 7 篇 learning systems
  • 7 篇 machine learning
  • 6 篇 task analysis
  • 6 篇 image segmentati...
  • 6 篇 computational li...
  • 6 篇 natural language...
  • 5 篇 surveys
  • 5 篇 reinforcement le...
  • 5 篇 big data
  • 5 篇 prototypes

机构

  • 148 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 63 篇 cas key laborato...
  • 27 篇 cas key lab of n...
  • 22 篇 university of am...
  • 21 篇 cas key lab of n...
  • 21 篇 school of comput...
  • 17 篇 data intelligenc...
  • 12 篇 institute for ai...
  • 11 篇 baidu inc
  • 10 篇 cas key laborato...
  • 10 篇 peng cheng labor...
  • 10 篇 zhejiang lab
  • 9 篇 key lab. of inte...
  • 9 篇 school of comput...
  • 9 篇 haihe lab of ita...
  • 9 篇 institute of com...
  • 9 篇 tianjin key labo...
  • 8 篇 linke lab school...
  • 7 篇 cas key laborato...

作者

  • 176 篇 cheng xueqi
  • 147 篇 guo jiafeng
  • 56 篇 zhang ruqing
  • 54 篇 fan yixing
  • 49 篇 lan yanyan
  • 43 篇 shen huawei
  • 30 篇 pang liang
  • 26 篇 jin xiaolong
  • 26 篇 bi keping
  • 22 篇 cao qi
  • 21 篇 de rijke maarten
  • 19 篇 xu jun
  • 18 篇 xueqi cheng
  • 18 篇 chen wei
  • 15 篇 li zixuan
  • 15 篇 guan saiping
  • 13 篇 sun xiaoming
  • 13 篇 bai long
  • 10 篇 xiaolong jin
  • 10 篇 huang qingming

语言

  • 454 篇 英文
  • 37 篇 其他
  • 3 篇 中文
检索条件"机构=Cas Key Lab of Network Data Science and Technology"
494 条 记 录,以下是411-420 订阅
排序:
On the Effectiveness of Function-Level Vulnerability Detectors for Inter-Procedural Vulnerabilities
On the Effectiveness of Function-Level Vulnerability Detecto...
收藏 引用
International Conference on Software Engineering (ICSE)
作者: Zhen Li Ning Wang Deqing Zou Yating Li Ruqian Zhang Shouhuai Xu Chao Zhang Hai Jin National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Hubei Key Laboratory of Distributed System Security Hubei Engineering Research Center on Big Data Security Cluster and Grid Computing Lab School of Cyber Science and Engineering Huazhong University of Science and Technology Wuhan China Jin YinHu Laboratory Wuhan China Department of Computer Science University of Colorado Colorado Springs Colorado Springs Colorado USA Institute for Network Sciences and Cyberspace Tsinghua University Beijing China School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China
Software vulnerabilities are a major cyber threat and it is important to detect them. One important approach to detecting vulnerabilities is to use deep learning while treating a program function as a whole, known as ... 详细信息
来源: 评论
Stacked Cross Refinement network for Edge-Aware Salient Object Detection
Stacked Cross Refinement Network for Edge-Aware Salient Obje...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Zhe Wu Li Su Qingming Huang School of Computer Science and Technology University of Chinese Academy of Sciences (UCAS) Beijing China Key Lab of Big Data Mining and Knowledge Management UCAS Beijing China Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS Beijing China Peng Cheng Laboratory ShenZhen China
Salient object detection is a fundamental computer vision task. The majority of existing algorithms focus on aggregating multi-level features of pre-trained convolutional neural networks. Moreover, some researchers at... 详细信息
来源: 评论
Long-distance entanglement purification for quantum communication
arXiv
收藏 引用
arXiv 2021年
作者: Hu, Xiao-Min Huang, Cen-Xiao Sheng, Yu-Bo Zhou, Lan Liu, Bi-Heng Guo, Yu Zhang, Chao Xing, Wen-Bo Huang, Yun-Feng Li, Chuan-Feng Guo, Guang-Can CAS Key Laboratory of Quantum Information University of Science and Technology of China Hefei230026 China Institute of Quantum Information and Technology Nanjing University of Posts and Telecommunications Nanjing210003 China College of Mathematics & Physics Nanjing University of Posts and Telecommunications Nanjing210003 China CAS Center For Excellence in Quantum Information and Quantum Physics University of Science and Technology of China Hefei230026 China Key Lab of Broadband Wireless Communication and Sensor Network Technology Nanjing University of Posts and Telecommunications Ministry of Education Nanjing210003 China
High quality long-distance entanglement is essential for both quantum communication and scalable quantum networks. Entanglement purification is to distill high-quality entanglement from low-quality entanglement in a n... 详细信息
来源: 评论
Computing integrals involved the gaussian function with a small standard deviation
arXiv
收藏 引用
arXiv 2018年
作者: Ma, Yunyun Ma, Yunyun Xu, Yuesheng Xu, Yuesheng School of Computer Science and Network Security Dongguan University of Technology Dongguan523808 China Department of Mathematics and Statistics Old Dominion University NorfolkVA23529 United States School of Data and Computer Science Guangdong Province Key Lab of Computational Science Sun Yat-sen University Guangzhou510275 China
We develop efficient numerical integration methods for computing an integral whose integrand is a product of a smooth function and the Gaussian function with a small standard deviation. Traditional numerical integrati... 详细信息
来源: 评论
CustomFair: A Customized Fairness Method for Federated Recommender Systems in Social Internet of Things
收藏 引用
IEEE Internet of Things Journal 2024年
作者: Chen, Guorong Li, Chao Du, Fei Yuan, Xiaohan Chi, Cheng Yin, Zihang Wang, Bin Li, Tao Bao, Xuhua Wang, Wei Beijing Jiaotong University Beijing Key Laboratory of Security and Privacy in Intelligent Transportation Beijing100044 China China Academy of Information and Communications Technology Beijing China Network and Data Security Hangzhou310053 China Nankai University College of Computer Science Tianjin300350 China LTD Sangfor Technologies Co Beijing China Xi'an Jiaotong University Ministry of Education Key Lab for Intelligent Networks and Network Security Xi'an China
In the Social Internet of Things (SIoT), edge computing integrates artificial intelligence to learn intricate relationships. The scale and complexity of SIoT cause a data explosion from diverse objects, hindering tail... 详细信息
来源: 评论
Ginsenoside compound-K attenuates OVX-induced osteoporosis via the suppression of RANKL-induced osteoclastogenesis and oxidative stress
收藏 引用
Natural Products and Bioprospecting 2023年 第1期13卷 159-170页
作者: Lingli Ding Zhao Gao Siluo Wu Chen Chen Yamei Liu Min Wang Yage Zhang Ling Li Hong Zou Guoping Zhao Shengnan Qin Liangliang Xu Key Laboratory of Orthopaedics and Traumatology Lingnan Medical Research CenterThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina Er Sha Sports Training Center of Guangdong Province GuangzhouChina School of Basic Medical Science Guangzhou University of Chinese MedicineGuangzhouChina Engineering Laboratory for Nutrition Shanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghaiChina Master Lab for Innovative Application of Nature Products National Center of Technology Innovation for Synthetic BiologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina CAS-Key Laboratory of Synthetic Biology CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina Bio-Med Big Data Center Shanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghaiChina State Key Laboratory of Genetic Engineering Department of Microbiology and ImmunologySchool of Life SciencesFudan UniversityShanghaiChina Department of Microbiology The Chinese University of Hong KongHong KongChina Department of Orthopaedics Guangzhou Institute of Traumatic SurgeryGuangzhou Red Cross HospitalMedical CollegeJinan UniversityGuangzhouChina
Osteoporosis(OP),a systemic and chronic bone disease,is distinguished by low bone mass and destruction of bone *** Compound-K(CK),one of the metabolites of ginsenoside Rb1,has anti-aging,anti-inflammatory,anti-cancer,... 详细信息
来源: 评论
Modelling universal order book dynamics in bitcoin market
arXiv
收藏 引用
arXiv 2021年
作者: Shi, Fabin Aden, Nathan Huang, Shengda Johnson, Neil Sun, Xiaoqian Gao, Jinhua Xu, Li Shen, Huawei Cheng, Xueqi Song, Chaoming CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing100049 China Department of Physics University of Miami Coral GablesFL33142 United States Physics Department George Washington University WashingtonD.C.20052 United States
Understanding the emergence of universal features such as the stylized facts in markets is a longstanding challenge that has drawn much attention from economists and physicists. Most existing models, such as stochasti... 详细信息
来源: 评论
BiKT: Unleashing the potential of GNNs via Bi-directional Knowledge Transfer
arXiv
收藏 引用
arXiv 2023年
作者: Zheng, Shuai Liu, Zhizhe Zhu, Zhenfeng Zhang, Xingxing Li, Jianxin Zhao, Yao The Institute of Information Science Beijing Jiaotong University Beijing100044 China The Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing100044 China Qiyuan Lab Beijing China The Beijing Advanced Innovation Center for Big Data and Brain Computing School of Computer Science and Engineering Beihang University Beijing100083 China
Based on the message-passing paradigm, there has been an amount of research proposing diverse and impressive feature propagation mechanisms to improve the performance of GNNs. However, less focus has been put on featu... 详细信息
来源: 评论
Toward Enhanced Robustness in Unsupervised Graph Representation Learning: A Graph Information Bottleneck Perspective
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Jihong Luo, Minnan Li, Jundong Liu, Ziqi Zhou, Jun Zheng, Qinghua The Ministry of Education Key Lab for Intelligent Networks and Network Security School of Computer Science and Technology Xi’an Jiaotong University Xi’an710049 China The Department of Electrical and Computer Engineering Department of Computer Science School of Data Science University of Virginia United States The Ant Financial Services Group Zhejiang Hangzhou310000 China
Recent studies have revealed that GNNs are vulnerable to adversarial attacks. Most existing robust graph learning methods measure model robustness based on label information, rendering them infeasible when label infor... 详细信息
来源: 评论
Gradient sparsification for efficient wireless federated learning with differential privacy
收藏 引用
science China(Information sciences) 2024年 第4期67卷 272-288页
作者: Kang WEI Jun LI Chuan MA Ming DING Feng SHU Haitao ZHAO Wen CHEN Hongbo ZHU School of Electronic and Optical Engineering Nanjing University of Science and Technology Zhejiang Lab Key Laboratory of Computer Network and Information Integration(Southeast University) Ministry of Education Data61 Commonwealth Scientific and Industrial Research Organisation School of Information and Communication Engineering Hainan University School of Communications and Information Engineering Nanjing University of Posts and Telecommunications School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University
Federated learning(FL) enables distributed clients to collaboratively train a machine learning model without sharing raw data with each other. However, it suffers from the leakage of private information from uploading... 详细信息
来源: 评论