咨询与建议

限定检索结果

文献类型

  • 318 篇 期刊文献
  • 179 篇 会议

馆藏范围

  • 497 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 341 篇 工学
    • 253 篇 计算机科学与技术...
    • 225 篇 软件工程
    • 63 篇 信息与通信工程
    • 37 篇 生物工程
    • 27 篇 控制科学与工程
    • 25 篇 电气工程
    • 23 篇 光学工程
    • 22 篇 电子科学与技术(可...
    • 16 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 10 篇 网络空间安全
    • 9 篇 安全科学与工程
    • 8 篇 机械工程
    • 8 篇 环境科学与工程(可...
  • 176 篇 理学
    • 90 篇 数学
    • 60 篇 物理学
    • 41 篇 生物学
    • 40 篇 统计学(可授理学、...
    • 14 篇 化学
    • 13 篇 地球物理学
    • 8 篇 系统科学
  • 135 篇 管理学
    • 105 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 14 篇 医学
    • 12 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 12 篇 法学
    • 10 篇 社会学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 4 篇 文学
  • 2 篇 教育学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 30 篇 semantics
  • 16 篇 deep learning
  • 13 篇 information retr...
  • 12 篇 training
  • 11 篇 generative adver...
  • 11 篇 graph neural net...
  • 9 篇 convolution
  • 9 篇 knowledge graph
  • 9 篇 forecasting
  • 8 篇 feature extracti...
  • 7 篇 learning systems
  • 7 篇 machine learning
  • 6 篇 reinforcement le...
  • 6 篇 task analysis
  • 6 篇 image segmentati...
  • 6 篇 computational li...
  • 6 篇 natural language...
  • 5 篇 surveys
  • 5 篇 big data
  • 5 篇 prototypes

机构

  • 151 篇 university of ch...
  • 81 篇 cas key lab of n...
  • 64 篇 cas key laborato...
  • 28 篇 cas key lab of n...
  • 24 篇 university of am...
  • 22 篇 cas key lab of n...
  • 21 篇 school of comput...
  • 17 篇 data intelligenc...
  • 12 篇 institute for ai...
  • 11 篇 key lab. of inte...
  • 11 篇 school of comput...
  • 11 篇 baidu inc
  • 10 篇 cas key laborato...
  • 10 篇 peng cheng labor...
  • 10 篇 zhejiang lab
  • 9 篇 institute of com...
  • 9 篇 tianjin key labo...
  • 8 篇 haihe lab of ita...
  • 8 篇 linke lab school...
  • 7 篇 cas key laborato...

作者

  • 180 篇 cheng xueqi
  • 151 篇 guo jiafeng
  • 58 篇 zhang ruqing
  • 57 篇 fan yixing
  • 49 篇 lan yanyan
  • 43 篇 shen huawei
  • 30 篇 pang liang
  • 27 篇 jin xiaolong
  • 26 篇 bi keping
  • 22 篇 de rijke maarten
  • 22 篇 cao qi
  • 20 篇 xueqi cheng
  • 19 篇 xu jun
  • 18 篇 chen wei
  • 16 篇 li zixuan
  • 15 篇 guan saiping
  • 14 篇 bai long
  • 13 篇 sun xiaoming
  • 11 篇 liu yu-an
  • 10 篇 xiaolong jin

语言

  • 448 篇 英文
  • 46 篇 其他
  • 3 篇 中文
检索条件"机构=Cas Key Lab of Network Data Science and Technology"
497 条 记 录,以下是421-430 订阅
A deep investigation of deep IR models
arXiv
收藏 引用
arXiv 2017年
作者: Pang, Liang Lan, Yanyan Guo, Jiafeng Xu, Jun Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
The effective of information retrieval (IR) systems have become more important than ever. Deep IR models have gained increasing attention for its ability to automatically learning features from raw text;thus, many dee... 详细信息
来源: 评论
Spherical paragraph model
arXiv
收藏 引用
arXiv 2017年
作者: Zhang, Ruqing Guo, Jiafeng Lan, Yanyan Xu, Jun Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Representing texts as fixed-length vectors is central to many language processing tasks. Most traditional methods build text representations based on the simple Bag-of-Words (BoW) representation, which loses the rich ... 详细信息
来源: 评论
MatchZoo: A toolkit for deep text matching
arXiv
收藏 引用
arXiv 2017年
作者: Fan, Yixing Pang, Liang Hou, JianPeng Guo, Jiafeng Lan, Yanyan Cheng, Xueqi Cas Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
In recent years, deep neural models have been widely adopted for text matching tasks, such as question answering and information retrieval, showing improved performance as compared with previous methods. In this paper... 详细信息
来源: 评论
Self-Learning and Embedding Based Entity Alignment
Self-Learning and Embedding Based Entity Alignment
收藏 引用
IEEE International Conference on Big Knowledge (ICBK)
作者: Saiping Guan Xiaolong Jin Yantao Jia Yuanzhuo Wang Huawei Shen Xueqi Cheng CAS Key Laboratory of Network Data Science and Technology University of Chinese Academy of Sciences
Entity alignment aims to identify semantical matchings between entities from different groups. Traditional methods (e.g., attribute comparison based methods, clustering based methods, and active learning methods) are ... 详细信息
来源: 评论
Periodic Gamma-ray Modulation of the blazar PG 1553+113 Confirmed by Fermi-LAT and Multi-wavelength Observations
arXiv
收藏 引用
arXiv 2025年
作者: Abdollahi, S. Baldini, L. Barbiellini, G. Bellazzini, R. Berenji, B. Bissaldi, E. Blandford, R.D. Bonino, R. Bruel, P. Buson, S. Cameron, R.A. Caraveo, P.A. casaburo, F. Cavazzuti, E. Cheung, C.C. Chiaro, G. Ciprini, S. Cozzolongo, G. Orestano, P. Cristarella Cutini, S. D’Ammando, F. Di Lalla, N. Dirirsa, F. Di Venere, L. Domínguez, A. Fegan, S.J. Ferrara, E.C. Fiori, A. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Garrappa, S. Gasparrini, D. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Green, D. Grenier, I.A. Guiriec, S. Hays, E. Horan, D. Kuss, M. Larsson, S. Laurenti, M. Li, J. Liodakis, I. Longo, F. Loparco, F. Lott, B. Lovellette, M.N. Lubrano, P. Maldera, S. Malyshev, D. Manfreda, A. Marcotulli, L. Martí-Devesa, G. Mazziotta, M.N. Mereu, I. Michelson, P.F. Mitthumsiri, W. Mizuno, T. Monzani, M.E. Morselli, A. Moskalenko, I.V. Negro, M. Omodei, N. Orienti, M. Orlando, E. Ormes, J.F. Paneque, D. Perri, M. Persic, M. Pesce-Rollins, M. Porter, T.A. Principe, G. Rainò, S. Rando, R. Rani, B. Razzano, M. Reimer, A. Reimer, O. Parkinson, P.M. Saz Scotton, L. Serini, D. Sesana, A. Sgrò, C. Siskind, E.J. Spandre, G. Spinelli, P. Suson, D.J. Tajima, H. Takahashi, M.N. Tak, D. Thayer, J.B. Thompson, D.J. Torres, D.F. Valverde, J. Verrecchia, F. Zaharijas, G. IRAP Université de Toulouse CNRS UPS CNES ToulouseF-31028 France Università di Pisa Istituto Nazionale di Fisica Nucleare Sezione di Pisa PisaI-56127 Italy Istituto Nazionale di Fisica Nucleare Sezione di Trieste TriesteI-34127 Italy Dipartimento di Fisica Università di Trieste TriesteI-34127 Italy Istituto Nazionale di Fisica Nucleare Sezione di Pisa PisaI-56127 Italy California State University Los Angeles Department of Physics and Astronomy Los AngelesCA90032 United States Dipartimento di Fisica "M. Merlin" dell’Università e del Politecnico di Bari via Amendola 173 BariI-70126 Italy Istituto Nazionale di Fisica Nucleare Sezione di Bari BariI-70126 Italy W. W. Hansen Experimental Physics Laboratory Kavli Institute for Particle Astrophysics and Cosmology Department of Physics SLAC National Accelerator Laboratory Stanford University StanfordCA94305 United States Istituto Nazionale di Fisica Nucleare Sezione di Torino TorinoI-10125 Italy Dipartimento di Fisica Università degli Studi di Torino TorinoI-10125 Italy Laboratoire Leprince-Ringuet CNRS IN2P3 École polytechnique Institut Polytechnique de Paris Palaiseau91120 France Institut für Theoretische Physik and Astrophysik Universität Würzburg WürzburgD-97074 Germany INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica Milano via E. Bassini 15 MilanoI-20133 Italy Istituto Nazionale di Fisica Nucleare Sezione di Roma "Tor Vergata" RomaI-00133 Italy Space Science Data Center - Agenzia Spaziale Italiana Via del Politecnico snc RomaI-00133 Italy Italian Space Agency Via del Politecnico snc Roma00133 Italy Space Science Division Naval Research Laboratory WashingtonDC20375-5352 United States Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen Centre for Astroparticle Physics Erwin-Rommel-Str. 1 Erlangen91058 Germany Friedrich-Alexander-Universität Erlangen-Nürnberg Schlossplatz 4 Erlangen91054 Germany Dipartimento di Fisica Università degli Studi di Perugia Perugia
A 2.1 year periodic oscillation of the γ-ray flux from the blazar PG 1553+113 has previously been tentatively identified in ∼ 7 years of data from the Fermi Large Area Telescope. After 15 years of Fermi sky-survey o... 详细信息
来源: 评论
Fostering innovation and advancement in evidence-based practice and guidelines within the field of pediatrics: The 2024 BRIGHT declaration
Pediatric Discovery
收藏 引用
Pediatric Discovery 2024年 第4期2卷
作者: Xu Wang Hui Liu Janne Estill Fujian Song Akihiko Ozaki Juan V. A. Franco Ivan D. Florez Etienne Ngeh Nav Persaud Liliya Eugenevna Ziganshina Myeong Soo Lee Lu Zhang Yuan Chi Yuting Duan Enmei Liu Yaolong Chen Xiaodong Zhao National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders Chongqing Key Laboratory of Child Infection and Immunity China International Science and Technology Cooperation base of Child Development and Critical Disorders Chongqing China Chevidence Lab Child & Adolescent Health Department of Pediatric Research Institute Children's Hospital of Chongqing Medical University Chongqing China Evidence-based Medicine Center School of Basic Medical Sciences Lanzhou University Lanzhou Gansu China Institute of Global Health University of Geneva Geneva Switzerland Norwich Medical School University of East Anglia Norwich UK Breast and Thyroid Center Jyoban Hospital of Tokiwa Foundation Fukushima Japan Institute of General Practice Medical Faculty Heinrich-Heine-Universitat Dusseldorf Dusseldorf Nordrhein-Westfalen Germany Department of Pediatrics University of Antioquia Medellin Colombia School of Rehabilitation Science McMaster University Hamilton Ontario Canada Pediatric Intensive Care Unit Clinica Las Americas-AUNA Medellin Colombia School of Health and Well Being Sheffield Hallam University Sheffield UK Research Organisation for Health Education and Rehabilitation-Cameroon (ROHER-CAM) Bamenda Cameroon Department of Family Medicine University of Toronto Faculty of Medicine Toronto Ontario Canada Russian Medical Academy for Continuing Professional Education (RMANPO) Moscow Russian Federation The Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University) Moscow Russian Federation The Kazan State Medical University Kazan Russian Federation KM Science Research Division Korea Institute of Oriental Medicine Daejeon Republic of Korea Department of Computer Science Hong Kong Baptist University Hong Kong China Institute of Systems Medicine and Health Sciences Hong Kong Baptist University Hong Kong China Yealth Network Beijing Health Technology Co. Ltd Beijing Chin
The first Better evidence and RecommendatIons for the next Generation HealTh—BRIGHT symposium was held in Chongqing, China between June 21 and 23, 2024. The symposium did not only showcase the recent progress made by... 详细信息
来源: 评论
Influence maximization with ε-almost submodular threshold functions  17
Influence maximization with ε-almost submodular threshold f...
收藏 引用
Proceedings of the 31st International Conference on Neural Information Processing Systems
作者: Qiang Li Wei Chen Xiaoming Sun Jialin Zhang CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences Microsoft Research
Influence maximization is the problem of selecting k nodes in a social network to maximize their influence spread. The problem has been extensively studied but most works focus on the submodular influence diffusion mo...
来源: 评论
HoloScope: Topology-and-Spike Aware Fraud Detection
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Shenghua Hooi, Bryan Faloutsos, Christos CAS Key Laboratory of Network Data Science & Technology Institute of Computing Technology Chinese Academy of Sciences Carnegie Mellon University
As online fraudsters invest more resources, including purchasing large pools of fake user accounts and dedicated IPs, fraudulent attacks become less obvious and their detection becomes increasingly challenging. Existi... 详细信息
来源: 评论
Marked temporal dynamics modeling based on recurrent neural network
arXiv
收藏 引用
arXiv 2017年
作者: Wang, Yongqing Liu, Shenghua Shen, Huawei Cheng, Xueqi CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China
We are now witnessing the increasing availability of event stream data, i.e., a sequence of events with each event typically being denoted by the time it occurs and its mark information (e.g., event type). A fundament... 详细信息
来源: 评论
Computing integrals involved the gaussian function with a small standard deviation
arXiv
收藏 引用
arXiv 2018年
作者: Ma, Yunyun Ma, Yunyun Xu, Yuesheng Xu, Yuesheng School of Computer Science and Network Security Dongguan University of Technology Dongguan523808 China Department of Mathematics and Statistics Old Dominion University NorfolkVA23529 United States School of Data and Computer Science Guangdong Province Key Lab of Computational Science Sun Yat-sen University Guangzhou510275 China
We develop efficient numerical integration methods for computing an integral whose integrand is a product of a smooth function and the Gaussian function with a small standard deviation. Traditional numerical integrati... 详细信息
来源: 评论