咨询与建议

限定检索结果

文献类型

  • 319 篇 期刊文献
  • 172 篇 会议

馆藏范围

  • 491 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 340 篇 工学
    • 254 篇 计算机科学与技术...
    • 225 篇 软件工程
    • 63 篇 信息与通信工程
    • 37 篇 生物工程
    • 26 篇 电气工程
    • 26 篇 控制科学与工程
    • 23 篇 电子科学与技术(可...
    • 22 篇 光学工程
    • 16 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 10 篇 网络空间安全
    • 9 篇 安全科学与工程
    • 8 篇 机械工程
    • 7 篇 环境科学与工程(可...
  • 177 篇 理学
    • 90 篇 数学
    • 60 篇 物理学
    • 41 篇 生物学
    • 39 篇 统计学(可授理学、...
    • 14 篇 化学
    • 13 篇 地球物理学
    • 9 篇 系统科学
  • 135 篇 管理学
    • 105 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 15 篇 医学
    • 13 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 11 篇 法学
    • 10 篇 社会学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 4 篇 文学
  • 2 篇 教育学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 31 篇 semantics
  • 16 篇 deep learning
  • 13 篇 information retr...
  • 12 篇 generative adver...
  • 12 篇 training
  • 11 篇 graph neural net...
  • 9 篇 convolution
  • 9 篇 knowledge graph
  • 9 篇 forecasting
  • 8 篇 feature extracti...
  • 7 篇 learning systems
  • 7 篇 machine learning
  • 6 篇 task analysis
  • 6 篇 image segmentati...
  • 6 篇 computational li...
  • 6 篇 natural language...
  • 5 篇 surveys
  • 5 篇 reinforcement le...
  • 5 篇 big data
  • 5 篇 prototypes

机构

  • 148 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 63 篇 cas key laborato...
  • 27 篇 cas key lab of n...
  • 22 篇 university of am...
  • 21 篇 cas key lab of n...
  • 21 篇 school of comput...
  • 17 篇 data intelligenc...
  • 12 篇 institute for ai...
  • 11 篇 baidu inc
  • 10 篇 cas key laborato...
  • 10 篇 peng cheng labor...
  • 9 篇 key lab. of inte...
  • 9 篇 school of comput...
  • 9 篇 haihe lab of ita...
  • 9 篇 zhejiang lab
  • 9 篇 institute of com...
  • 9 篇 tianjin key labo...
  • 8 篇 linke lab school...
  • 7 篇 cas key laborato...

作者

  • 176 篇 cheng xueqi
  • 147 篇 guo jiafeng
  • 56 篇 zhang ruqing
  • 54 篇 fan yixing
  • 49 篇 lan yanyan
  • 43 篇 shen huawei
  • 30 篇 pang liang
  • 26 篇 jin xiaolong
  • 26 篇 bi keping
  • 22 篇 cao qi
  • 21 篇 de rijke maarten
  • 19 篇 xu jun
  • 18 篇 chen wei
  • 17 篇 xueqi cheng
  • 15 篇 li zixuan
  • 15 篇 guan saiping
  • 13 篇 sun xiaoming
  • 13 篇 bai long
  • 10 篇 xiaolong jin
  • 10 篇 huang qingming

语言

  • 452 篇 英文
  • 36 篇 其他
  • 3 篇 中文
检索条件"机构=Cas Key Lab of Network Data Science and Technology"
491 条 记 录,以下是41-50 订阅
排序:
Evaluating natural language generation via unbalanced optimal transport  29
Evaluating natural language generation via unbalanced optima...
收藏 引用
29th International Joint Conference on Artificial Intelligence, IJCAI 2020
作者: Chen, Yimeng Lan, Yanyan Xiong, Ruibin Pang, Liang Ma, Zhiming Cheng, Xueqi University of Chinese Academy of Sciences China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology CAS China Academy of Mathematics and Systems Science CAS China
Embedding-based evaluation measures have shown promising improvements on the correlation with human judgments in natural language generation. In these measures, various intrinsic metrics are used in the computation, i... 详细信息
来源: 评论
Modeling topical relevance for multi-turn dialogue generation  29
Modeling topical relevance for multi-turn dialogue generatio...
收藏 引用
29th International Joint Conference on Artificial Intelligence, IJCAI 2020
作者: Zhang, Hainan Lan, Yanyan Pang, Liang Chen, Hongshen Ding, Zhuoye Yin, Dawei CAS Key Lab of Network Data Science and Technology Institute of Computing Technology CAS China *** Beijing China University of Chinese Academy of Sciences China
Topic drift is a common phenomenon in multi-turn dialogue. Therefore, an ideal dialogue generation models should be able to capture the topic information of each context, detect the relevant context, and produce appro... 详细信息
来源: 评论
Neural or statistical: An empirical study on language models for Chinese input recommendation on mobile  23rd
Neural or statistical: An empirical study on language models...
收藏 引用
23rd China conference on Information Retrieval, CCIR 2017
作者: Zhang, Hainan Lan, Yanyan Guo, Jiafeng Xu, Jun Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China
Chinese input recommendation plays an important role in alleviating human cost in typing Chinese words, especially in the scenario of mobile applications. The fundamental problem is to predict the conditional probabil... 详细信息
来源: 评论
Beyond Precision: A Study on Recall of Initial Retrieval with Neural Representations  1
收藏 引用
28th China Conference on Information Retrieval, CCIR 2022
作者: Xiao, Yan Fan, Yixing Zhang, Ruqing Guo, Jiafeng CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China
Vocabulary mismatch is a central problem in information retrieval (IR), i.e., the relevant documents may not contain the same (symbolic) terms of the query. Recently, neural representations have shown great success in... 详细信息
来源: 评论
Academic access data analysis for literature recommendation  23rd
Academic access data analysis for literature recommendation
收藏 引用
23rd China conference on Information Retrieval, CCIR 2017
作者: Fan, Yixing Guo, Jiafeng Lan, Yanyan Xu, Jun Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China
Academic reading plays an important role in researchers’ daily life. To alleviate the burden of seeking relevant literature from rapidly growing academic repository, different kinds of recommender systems have been i... 详细信息
来源: 评论
Understanding and Improving Neural Ranking Models from a Term Dependence View  15th
Understanding and Improving Neural Ranking Models from a Ter...
收藏 引用
15th Asia Information Retrieval Societies Conference, AIRS 2019
作者: Fan, Yixing Guo, Jiafeng Lan, Yanyan Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China
Recently, neural information retrieval (NeuIR) has attracted a lot of interests, where a variety of neural models have been proposed for the core ranking problem. Beyond the continuous refresh of the state-of-the-art ... 详细信息
来源: 评论
Generative Retrieval Meets Multi-Graded Relevance  38
Generative Retrieval Meets Multi-Graded Relevance
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Tang, Yubao Zhang, Ruqing Guo, Jiafeng de Rijke, Maarten Chen, Wei Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS China University of Chinese Academy of Sciences China University of Amsterdam Netherlands
Generative retrieval represents a novel approach to information retrieval. It uses an encoder-decoder architecture to directly produce relevant document identifiers (docids) for queries. While this method offers benef...
来源: 评论
A rejection sampling algorithm for off-centered discrete Gaussian distributions over the integers
收藏 引用
science China(Information sciences) 2019年 第3期62卷 196-198页
作者: Yusong DU Baodian WEI Huang ZHANG School of Data and Computer Science Sun Yat-sen University Guangdong Key Laboratory of Information Security Technology Chongqing Key Lab of Computer Network and Communication Technology
Dear editor,Discrete Gaussian sampling, that is, sampling from a discrete Gaussian distribution DΛ,σ,cwith parameter σ> 0 and center c∈R~n over an ndimensional lattice Λ, has been considered by the cryptograph... 详细信息
来源: 评论
Sparse Word Embeddings Using 1 Regularized Online Learning
Sparse Word Embeddings Using 1 Regularized Online Learning
收藏 引用
25th International Joint Conference on Artificial Intelligence, IJCAI 2016
作者: Sun, Fei Guo, Jiafeng Lan, Yanyan Xu, Jun Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China
Recently, Word2Vec tool has attracted a lot of interest for its promising performances in a variety of natural language processing (NLP) tasks. However, a critical issue is that the dense word representations learned ... 详细信息
来源: 评论
ICTNET at TREC 2019 Deep Learning Track  28
ICTNET at TREC 2019 Deep Learning Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Chen, Jiangui Cai, Yinqiong Jiang, Haoquan University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
We participated in the Deep Learning Track at TREC 2019. We built a ranking system which combines a search component based on BM25 and a semantic matching component using pretraining knowledge. Our best run achieves N... 详细信息
来源: 评论