咨询与建议

限定检索结果

文献类型

  • 189 篇 期刊文献
  • 164 篇 会议

馆藏范围

  • 353 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 239 篇 工学
    • 164 篇 计算机科学与技术...
    • 144 篇 软件工程
    • 80 篇 生物工程
    • 76 篇 信息与通信工程
    • 55 篇 生物医学工程(可授...
    • 45 篇 光学工程
    • 23 篇 电气工程
    • 22 篇 机械工程
    • 21 篇 电子科学与技术(可...
    • 20 篇 控制科学与工程
    • 10 篇 化学工程与技术
    • 7 篇 仪器科学与技术
    • 6 篇 动力工程及工程热...
    • 5 篇 土木工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
  • 140 篇 理学
    • 85 篇 生物学
    • 50 篇 物理学
    • 48 篇 数学
    • 21 篇 统计学(可授理学、...
    • 10 篇 化学
    • 3 篇 系统科学
  • 36 篇 管理学
    • 23 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
    • 8 篇 工商管理
  • 23 篇 医学
    • 23 篇 基础医学(可授医学...
    • 23 篇 临床医学
    • 22 篇 药学(可授医学、理...
  • 9 篇 法学
    • 8 篇 社会学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 30 篇 feature extracti...
  • 26 篇 face recognition
  • 20 篇 training
  • 16 篇 databases
  • 15 篇 cameras
  • 15 篇 convolution
  • 13 篇 videos
  • 11 篇 face
  • 10 篇 deep learning
  • 10 篇 deep neural netw...
  • 10 篇 pixels
  • 9 篇 photoplethysmogr...
  • 8 篇 three-dimensiona...
  • 8 篇 visualization
  • 8 篇 machine learning
  • 8 篇 accuracy
  • 7 篇 semantics
  • 7 篇 estimation
  • 7 篇 measurement
  • 6 篇 database systems

机构

  • 165 篇 center for machi...
  • 68 篇 center for machi...
  • 12 篇 center for machi...
  • 12 篇 department of co...
  • 11 篇 state key labora...
  • 10 篇 the center for m...
  • 8 篇 university of ou...
  • 8 篇 college of syste...
  • 8 篇 center for machi...
  • 8 篇 national univers...
  • 8 篇 school of electr...
  • 7 篇 department of co...
  • 6 篇 university of ch...
  • 6 篇 school of comput...
  • 5 篇 centre for wirel...
  • 5 篇 the center for m...
  • 5 篇 university of ou...
  • 5 篇 institute of com...
  • 4 篇 south china univ...
  • 4 篇 center for machi...

作者

  • 83 篇 zhao guoying
  • 33 篇 li xiaobai
  • 32 篇 liu li
  • 27 篇 heikkilä janne
  • 26 篇 yu zitong
  • 21 篇 guoying zhao
  • 17 篇 oussalah mourad
  • 17 篇 peng wei
  • 15 篇 miguel bordallo ...
  • 14 篇 pietikäinen matt...
  • 13 篇 rahtu esa
  • 13 篇 lópez miguel bor...
  • 13 篇 zafeiriou stefan...
  • 13 篇 chen haoyu
  • 12 篇 su zhuo
  • 11 篇 abdenour hadid
  • 10 篇 huynh lam
  • 10 篇 liu xin
  • 10 篇 muhammad usman
  • 10 篇 hong xiaopeng

语言

  • 299 篇 英文
  • 51 篇 其他
  • 4 篇 中文
检索条件"机构=Center For Machine Vision and Signal Analysis"
353 条 记 录,以下是1-10 订阅
排序:
A Conic Transformation Approach for Solving the Perspective-Three-Point Problem
A Conic Transformation Approach for Solving the Perspective-...
收藏 引用
2025 IEEE/CVF Winter Conference on Applications of Computer vision, WACV 2025
作者: Wu, Haidong Bhayani, Snehal Heikkilä, Janne University of Oulu Center for Machine Vision and Signal Analysis Oulu Finland
We propose a conic transformation method to solve the Perspective-Three-Point (P3P) problem. In contrast to the current state-of-the-art solvers, which formulate the P3P problem by intersecting two conics and construc... 详细信息
来源: 评论
CD-FSOD: A Benchmark For Cross-Domain Few-Shot Object Detection  48
CD-FSOD: A Benchmark For Cross-Domain Few-Shot Object Detect...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and signal Processing, ICASSP 2023
作者: Xiong, Wuti University of Oulu Center for Machine Vision and Signal Analysis Finland
In this paper, we propose a study of the cross-domain few-shot object detection (CD-FSOD) benchmark, consisting of image data from a diverse data domain. On the proposed benchmark, we evaluate state-of-art FSOD approa... 详细信息
来源: 评论
Attention-guided Boundary Refinement on Anchor-free Temporal Action Detection  23rd
Attention-guided Boundary Refinement on Anchor-free Tempora...
收藏 引用
22nd Scandinavian Conference on Image analysis, SCIA 2023
作者: Shi, Henglin Chen, Haoyu Zhao, Guoying Center for Machine Vision and Signal Analysis University of Oulu Oulu Finland
Modelling temporal dependencies is important for accurate action detection. In this work, we develop a temporal attention unit to mine the global dependencies among features from different temporal locations. Addition... 详细信息
来源: 评论
Evaluating Text Summarization Techniques and Factual Consistency with Language Models
Evaluating Text Summarization Techniques and Factual Consist...
收藏 引用
2024 IEEE International Conference on Big Data, BigData 2024
作者: Islam, Md Moinul Muhammad, Usman Oussalah, Mourad University of Oulu Center for Machine Vision and Signal Analysis Finland Aalto University Department of Computer Science Finland
Standard evaluation of automated text summarization (ATS) methods relies on manually crafted golden summaries. With the advances in Large Language Models (LLMs), it is legitimate to question whether these models can n... 详细信息
来源: 评论
Learning Binary-Antithetical Information Bottleneck for Generalizable Face Anti-Spoofing
Learning Binary-Antithetical Information Bottleneck for Gene...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and signal Processing, ICASSP 2025
作者: Yu, Hao Chen, Haoyu Zhao, Guoying Center for Machine Vision and Signal Analysis University of Oulu Finland Department of Computer Science Aalto University Finland
We investigate generalizable face anti-spoofing (FAS) using information bottleneck theory. As generalizable FAS aims to detect spoofing in unseen scenarios, it has recently gained significant attention. Existing metho... 详细信息
来源: 评论
Demonstration of a Continuously Updated, Radio-Compatible Digital Twin for Robotic Integrated Sensing and Communications  5
Demonstration of a Continuously Updated, Radio-Compatible Di...
收藏 引用
5th IEEE International Symposium on Joint Communications and Sensing, JC and S 2025
作者: Andrei, Vlad C. Susarla, Praneeth Djuhera, Aladin Vaara, Niklas Mustaniemi, Janne Casado, Constantino Álvarez Li, Xinyang Monich, Ullrich J. Boche, Holger López, Miguel Bordallo Technical University of Munich Munich Germany 6G Flagship University of Oulu Center for Machine Vision and Signal Analysis Finland
Integrated sensing and communications (ISAC) is essential for future 6 G, bridging physical and digital worlds by enabling wireless systems to sense and respond to their environment. Digital twins (DTs) enhance ISAC b... 详细信息
来源: 评论
Deep Ensemble Learning with Frame Skipping for Face Anti-Spoofing  12
Deep Ensemble Learning with Frame Skipping for Face Anti-Spo...
收藏 引用
12th International Conference on Image Processing Theory, Tools and Applications, IPTA 2023
作者: Muhammad, Usman Hoque, Md Ziaul Oussalah, Mourad Laaksonen, Jorma University of Oulu Center for Machine Vision and Signal Analysis Finland Aalto University Department of Computer Science Finland
Face presentation attacks, also known as spoofing attacks, pose a substantial threat to biometric systems that rely on facial recognition systems, such as access control systems, mobile payments, and identity verifica... 详细信息
来源: 评论
Exploring Facial Kinship Verification through Contactless Heart Activity analysis
Exploring Facial Kinship Verification through Contactless He...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and signal Processing, ICASSP 2025
作者: Wu, Xiaoting Feng, Xiaoyi Casado, Constantino Álvarez Liu, Lili López, Miguel Bordallo Center for Machine Vision and Signal Analysis University of Oulu Oulu Finland School of Electronics and Information Northwestern Polytechnical University Xi'an China
Facial Kinship Verification (FKV) aims at automatically determining whether two subjects have a kinship relation based on human faces. It has potential applications in finding missing children and social media analysi... 详细信息
来源: 评论
LOOKING BACK ON LEARNED EXPERIENCES FOR CLASS/TASK INCREMENTAL LEARNING  10
LOOKING BACK ON LEARNED EXPERIENCES FOR CLASS/TASK INCREMENT...
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: PourKeshavarz, Mozhgan Zhao, Guoying Sabokrou, Mohammad Iran Center for Machine Vision and Signal Analysis University of Oulu Finland
Classical deep neural networks are limited in their ability to learn from emerging streams of training data. When trained sequentially on new or evolving tasks, their performance degrades sharply, making them inapprop... 详细信息
来源: 评论
Exemplar-Free Incremental Deepfake Detection  27
Exemplar-Free Incremental Deepfake Detection
收藏 引用
27th European Conference on Artificial Intelligence, ECAI 2024
作者: Xiong, Wuti Zhao, Guoying Li, Xiaobai Center for Machine Vision and Signal Analysis University of Oulu Oulu Finland State Key Laboratory of Blockchain and Data Security Zhejiang University Hangzhou China
Incremental Deepfake Detection (IDD) aims to continuously update models with new domain data, adapting to evolving forgery techniques. Existing works require extra buffers to store old exemplars for maintaining previo... 详细信息
来源: 评论