Explainable Fake News Detection (EFND) is a new challenge that aims to verify news authenticity and provide clear explanations for its decisions. Traditional EFND methods often treat the tasks of classification and ex...
详细信息
Explainable Fake News Detection (EFND) is a new challenge that aims to verify news authenticity and provide clear explanations for its decisions. Traditional EFND methods often treat the tasks of classification and explanation as separate, ignoring the fact that explanation content can assist in enhancing fake news detection. To overcome this gap, we present a new solution: the End-to-end Explainable Fake News Detection Network (\(EExpFND\)). Our model includes an evidence-claim variational causal inference component, which not only utilizes explanation content to improve fake news detection but also employs a variational approach to address the distributional bias between the ground truth explanation in the training set and the prediction explanation in the test set. Additionally, we incorporate a masked attention network to detail the nuanced relationships between evidence and claims. Our comprehensive tests across two public datasets show that \(EExpFND\) sets a new benchmark in performance. The code is available at https://***/r/EExpFND-F5C6.
This book constitutes the refereed proceedings of the 15th International Conference on Web-Age Information Management, WAIM 2014, held in Macau, China, in June 2014. The 48 revised full papers presented together with ...
详细信息
ISBN:
(数字)9783319080109
ISBN:
(纸本)9783319080093
This book constitutes the refereed proceedings of the 15th International Conference on Web-Age Information Management, WAIM 2014, held in Macau, China, in June 2014. The 48 revised full papers presented together with 35 short papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on information retrieval; recommender systems; query processing and optimization; data mining; data and information quality; information extraction; mobile and pervasive computing; stream, time-series; security and privacy; semantic web; cloud computing; new hardware; crowdsourcing; social computing.
This book constitutes the refereed proceedings of the International Conference on the Applications of Evolutionary Computation, EvoApplications 2012, held in Málaga, Spain, in April 2012, colocated with the Evo* ...
详细信息
ISBN:
(数字)9783642291784
ISBN:
(纸本)9783642291777
This book constitutes the refereed proceedings of the International Conference on the Applications of Evolutionary Computation, EvoApplications 2012, held in Málaga, Spain, in April 2012, colocated with the Evo* 2012 events EuroGP, EvoCOP, EvoBIO, and EvoMUSART. The 54 revised full papers presented were carefully reviewed and selected from 90 submissions. EvoApplications 2012 consisted of the following 11 tracks: EvoCOMNET (nature-inspired techniques for telecommunication networks and other parrallel and distributed systems), EvoCOMPLEX (algorithms and complex systems), EvoFIN (evolutionary and natural computation in finance and economics), EvoGAMES (bio-inspired algorithms in games), EvoHOT (bio-inspired heuristics for design automation), EvoIASP (evolutionary computation in image analysis and signal processing), EvoNUM (bio-inspired algorithms for continuous parameter optimization), EvoPAR (parallel implementation of evolutionary algorithms), EvoRISK (computational intelligence for risk management, security and defense applications), EvoSTIM (nature-inspired techniques in scheduling, planning, and timetabling), and EvoSTOC (evolutionary algorithms in stochastic and dynamic environments).
This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory, together with a wealth of appl...
详细信息
ISBN:
(数字)9783030054113
ISBN:
(纸本)9783030054106
This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory, together with a wealth of applications. It presents the peer-reviewed proceedings of the VII International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2018), which was held in Cambridge on December 11–13, 2018. The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure and network dynamics; diffusion, epidemics and spreading processes; and resilience and control; as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks; and technological networks.
Nowadays, research on session-based recommender systems (SRSs) is one of the hot spots in the recommendation domain. Existing methods make recommendations based on the user’s current intention (also called short-term...
详细信息
Nowadays, research on session-based recommender systems (SRSs) is one of the hot spots in the recommendation domain. Existing methods make recommendations based on the user’s current intention (also called short-term preference) during a session, often overlooking the specific preferences associated with these intentions. In reality, users usually exhibit diverse preferences for different intentions, and even for the same intention, individual preferences can vary significantly between users. As users interact with items throughout a session, their intentions can shift accordingly. To enhance recommendation quality, it is crucial not only to consider the user’s intentions but also to dynamically learn their varying preferences as these intentions change. In this paper, we propose a novel Intention-sensitive Preference Learning Network (IPLN) including three main modules: intention recognizer, preference detector, and prediction layer. Specifically, the intention recognizer infers the user’s underlying intention within his/her current session by analyzing complex relationships among items. Based on the acquired intention, the preference detector learns the intention-specific preference by selectively integrating latent features from items in the user’s historical sessions. Besides, the user’s general preference is utilized to refine the obtained preference to reduce the potential noise carried from historical records. Ultimately, the fine-tuned preference and intention collaborate to instruct the next-item recommendation in the prediction layer. To prove the effectiveness of the proposed IPLN, we perform extensive experiments on two real-world datasets. The experiment results demonstrate the superiority of IPLN compared with other state-of-the-art models.
暂无评论