As an advanced carrier of on-board sensors, connected autonomous vehicle (CAV) can be viewed as an aggregation of self-adaptive systems with monitor-analyze-plan-execute (MAPE) for vehicle-related services. Meanwhile,...
详细信息
As an advanced carrier of on-board sensors, connected autonomous vehicle (CAV) can be viewed as an aggregation of self-adaptive systems with monitor-analyze-plan-execute (MAPE) for vehicle-related services. Meanwhile, machine learning (ML) has been applied to enhance analysis and plan functions of MAPE so that self-adaptive systems have optimal adaption to changing conditions. However, most of ML-based approaches don’t utilize CAVs’ connectivity to collaboratively generate an optimal learner for MAPE, because of sensor data threatened by gradient leakage attack (GLA). In this article, we first design an intelligent architecture for MAPE-based self-adaptive systems on Web 3.0-based CAVs, in which a collaborative machine learner supports the capabilities of managing systems. Then, we observe by practical experiments that importance sampling of sparse vector technique (SVT) approaches cannot defend GLA well. Next, we propose a fine-grained SVT approach to secure the learner in MAPE-based self-adaptive systems, that uses layer and gradient sampling to select uniform and important gradients. At last, extensive experiments show that our private learner spends a slight utility cost for MAPE (e.g., \(0.77\%\) decrease in accuracy) defending GLA and outperforms the typical SVT approaches in terms of defense (increased by \(10\%\sim 14\%\) attack success rate) and utility (decreased by \(1.29\%\) accuracy loss).
The advancement of the Internet of Medical Things (IoMT) has led to the emergence of various health and emotion care services, e.g., health monitoring. To cater to increasing computational requirements of IoMT service...
详细信息
The advancement of the Internet of Medical Things (IoMT) has led to the emergence of various health and emotion care services, e.g., health monitoring. To cater to increasing computational requirements of IoMT services, Mobile Edge Computing (MEC) has emerged as an indispensable technology in smart health. Benefiting from the cost-effectiveness of deployment, unmanned aerial vehicles (UAVs) equipped with MEC servers in Non-Orthogonal Multiple Access (NOMA) have emerged as a promising solution for providing smart health services in proximity to medical devices (MDs). However, the escalating number of MDs and the limited availability of communication resources of UAVs give rise to a significant increase in transmission latency. Moreover, due to the limited communication range of UAVs, the geographically-distributed MDs lead to workload imbalance of UAVs, which deteriorates the service response delay. To this end, this paper proposes a UAV-enabled Distributed computation Offloading and Power control method with Multi-Agent, named DOPMA, for NOMA-based IoMT environment. Specifically, this paper introduces computation and transmission queue models to analyze the dynamic characteristics of task execution latency and energy consumption. Moreover, a credit assignment scheme-based reward function is designed considering both system-level rewards and rewards tailored to each MD, and an improved multi-agent deep deterministic policy gradient algorithm is developed to derive offloading and power control decisions independently. Extensive simulations demonstrate that the proposed method outperforms existing schemes, achieving \(7.1\%\) reduction in energy consumption and \(16\%\) decrease in average delay.
暂无评论