咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 103 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 69 篇 工学
    • 54 篇 计算机科学与技术...
    • 49 篇 软件工程
    • 23 篇 生物工程
    • 18 篇 生物医学工程(可授...
    • 17 篇 信息与通信工程
    • 15 篇 光学工程
    • 9 篇 电气工程
    • 9 篇 控制科学与工程
    • 8 篇 电子科学与技术(可...
    • 8 篇 化学工程与技术
    • 3 篇 林业工程
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 安全科学与工程
  • 49 篇 理学
    • 25 篇 生物学
    • 19 篇 数学
    • 15 篇 物理学
    • 10 篇 化学
    • 9 篇 统计学(可授理学、...
    • 6 篇 系统科学
  • 18 篇 医学
    • 18 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
    • 3 篇 公共卫生与预防医...
    • 2 篇 特种医学
    • 2 篇 医学技术(可授医学...
  • 18 篇 管理学
    • 13 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
  • 3 篇 农学

主题

  • 5 篇 face recognition
  • 5 篇 semantics
  • 5 篇 training
  • 4 篇 image segmentati...
  • 4 篇 magnetic resonan...
  • 4 篇 character recogn...
  • 3 篇 distillation
  • 3 篇 generative adver...
  • 3 篇 electroencephalo...
  • 2 篇 conferences
  • 2 篇 medical image cl...
  • 2 篇 deep learning
  • 2 篇 deep neural netw...
  • 2 篇 task analysis
  • 2 篇 brain-computer i...
  • 2 篇 signal processin...
  • 2 篇 lung
  • 2 篇 computerized tom...
  • 2 篇 decision trees
  • 2 篇 gaussian distrib...

机构

  • 27 篇 shanghai center ...
  • 17 篇 shanghai key lab...
  • 14 篇 institute of sci...
  • 13 篇 shanghai key lab...
  • 11 篇 institute of sci...
  • 11 篇 school of comput...
  • 9 篇 moe frontiers ce...
  • 7 篇 institute of sci...
  • 7 篇 shanghai key lab...
  • 7 篇 zhangjiang fudan...
  • 5 篇 national key lab...
  • 5 篇 national enginee...
  • 5 篇 school of electr...
  • 5 篇 university of ch...
  • 5 篇 center for brain...
  • 5 篇 the state key la...
  • 5 篇 college of compu...
  • 5 篇 the shanghai cen...
  • 4 篇 ministry of educ...
  • 4 篇 school of cyber ...

作者

  • 24 篇 shan hongming
  • 22 篇 zhang junping
  • 15 篇 hongming shan
  • 13 篇 junping zhang
  • 11 篇 huang zhizhong
  • 9 篇 lei yiming
  • 9 篇 fu yanwei
  • 8 篇 li zilong
  • 8 篇 xue xiangyang
  • 8 篇 yiming lei
  • 6 篇 zhu shanfeng
  • 5 篇 huang xiaodi
  • 5 篇 bian junyi
  • 5 篇 zhang yi
  • 4 篇 zhizhong huang
  • 4 篇 zhai weiqi
  • 4 篇 li yuanqing
  • 4 篇 ma chenglong
  • 4 篇 zilong li
  • 3 篇 bakas spyridon

语言

  • 99 篇 英文
  • 2 篇 其他
  • 2 篇 中文
检索条件"机构=Center for Brain Computer Interfaces and Brain Information Processing"
103 条 记 录,以下是1-10 订阅
排序:
End-to-End Paired Ambisonic-Binaural Audio Rendering
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2024年 第2期11卷 502-513页
作者: Yin Zhu Qiuqiang Kong Junjie Shi Shilei Liu Xuzhou Ye Ju-Chiang Wang Hongming Shan Junping Zhang Shanghai Key Laboratory of Intelligent Information Processing School of Computer ScienceFudan UniversityShanghai 200433China Beijing ByteDance Technology Co.Ltd. Shanghai 201102China. Chinese University of Hong Kong Hong KongChina IEEE Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science Fudan UniversityShanghai 200433 Shanghai Center for Brain Science and Brain-Inspired Technology Shanghai 200031China
Binaural rendering is of great interest to virtual reality and immersive media. Although humans can naturally use their two ears to perceive the spatial information contained in sounds, it is a challenging task for ma... 详细信息
来源: 评论
Decoding Musical Neural Activity in Patients With Disorders of Consciousness Through Self-Supervised Contrastive Domain Generalization
收藏 引用
IEEE Transactions on Affective Computing 2024年 第2期16卷 726-743页
作者: Cai, Honghua Pan, Jiahui Xiao, Qiuyi Jin, Jiarui Li, Yuanqing Xie, Qiuyou South China Normal University School of Software Foshan528225 China South China University of Technology School of Automation Science and Engineering Guangzhou510640 China Southern Medical University Zhujiang Hospital Guangzhou510260 China South China University of Technology Center for Brain-Computer Interfaces and Brain Information Processing Guangzhou510640 China Pazhou Lab Guangzhou510330 China
Identifying the brain responses of patients with disorders of consciousness (DOCs), which include comas, vegetative states (VSs, also called unresponsive wakefulness syndrome (UWS)) and minimally conscious states (MCS... 详细信息
来源: 评论
Meta Ordinal Regression Forest for Medical Image Classification With Ordinal Labels
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2022年 第7期9卷 1233-1247页
作者: Yiming Lei Haiping Zhu Junping Zhang Hongming Shan Shanghai Key Laboratory of Intelligent Information Processing the School of Computer ScienceFudan UniversityShanghai 200433China with Huawei Shanghai 200120China Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science Fudan UniversityShanghai 200433 Shanghai Center for Brain Science and Brain-Inspired Technology Shanghai 200031China IEEE
The performance of medical image classification has been enhanced by deep convolutional neural networks(CNNs),which are typically trained with cross-entropy(CE)***,when the label presents an intrinsic ordinal property... 详细信息
来源: 评论
Denoising Diffusion Path: Attribution Noise Reduction with An Auxiliary Diffusion Model  38
Denoising Diffusion Path: Attribution Noise Reduction with A...
收藏 引用
38th Conference on Neural information processing Systems, NeurIPS 2024
作者: Lei, Yiming Li, Zilong Zhang, Junping Shan, Hongming Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University China Institute of Science and Technology for Brain-Inspired Intelligence MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence MOE Frontiers Center for Brain Science Fudan University China
The explainability of deep neural networks (DNNs) is critical for trust and reliability in AI systems. Path-based attribution methods, such as integrated gradients (IG), aim to explain predictions by accumulating grad...
来源: 评论
Prompt learning in computer vision: a survey
收藏 引用
Frontiers of information Technology & Electronic Engineering 2024年 第1期25卷 42-63页
作者: Yiming LEI Jingqi LI Zilong LI Yuan CAO Hongming SHAN Shanghai Key Laboratory of Intelligent Information Processing School of Computer ScienceFudan UniversityShanghai 200438China Institute of Science and Technology for Brain-Inspired Intelligence Fudan UniversityShanghai 200433China MOE Frontiers Center for Brain Science Fudan UniversityShanghai 200433China Shanghai Center for Brain Science and Brain-Inspired Technology Shanghai 201210China
Prompt learning has attracted broad attention in computer vision since the large pre-trained visionlanguagemodels (VLMs) exploded. Based on the close relationship between vision and language information builtby VLM, p... 详细信息
来源: 评论
Fan-Net: Fourier-Based Adaptive Normalization for Cross-Domain Stroke Lesion Segmentation  48
Fan-Net: Fourier-Based Adaptive Normalization for Cross-Doma...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal processing, ICASSP 2023
作者: Yu, Weiyi Lei, Yiming Shan, Hongming Fudan University School of Computer Science Shanghai Key Lab of Intelligent Information Processing Shanghai200433 China Institute of Science and Technology for Brain-Inspired Intelligence China Shanghai Center for Brain Science and Brain-Inspired Technology Shanghai201210 China
Since stroke is the main cause of various cerebrovascular diseases, deep learning-based stroke lesion segmentation on magnetic resonance (MR) images has attracted considerable attention. However, the existing methods ... 详细信息
来源: 评论
Extending generalized unsupervised manifold alignment
收藏 引用
Science China(information Sciences) 2022年 第7期65卷 139-156页
作者: Xiaoyi YIN Zhen CUI Hong CHANG Bingpeng MA Shiguang SHAN Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences School of Computer Science and Engineering Nanjing University of Science and Technology CAS Center for Excellence in Brain Science and Intelligence Technology
Building connections between different data sets is a fundamental task in machine learning and related application community. With proper manifold alignment, the correspondences between data sets will assist us with c... 详细信息
来源: 评论
Radiologist-in-the-Loop Self-Training for Generalizable CT Metal Artifact Reduction
收藏 引用
IEEE Transactions on Medical Imaging 2025年 第6期44卷 2504-2514页
作者: Ma, Chenglong Li, Zilong Li, Yuanlin Han, Jing Zhang, Junping Zhang, Yi Liu, Jiannan Shan, Hongming Fudan University Institute of Science and Technology for Brain-inspired Intelligence Moe Frontiers Center for Brain Science Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Shanghai200433 China Fudan University Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Shanghai200433 China Shanghai Ninth People's Hospital Department of Oral Maxillofacial Head and Neck Oncology China Shanghai Jiao Tong University School of Medicine College of Stomatology China Shanghai Key Laboratory of Stomatology Shanghai Research Institute of Stomatology National Center for Stomatology National Clinical Research Center for Oral Diseases Shanghai200011 China Sichuan University School of Cyber Science and Engineering Chengdu Sichuan610065 China
Metal artifacts in computed tomography (CT) images can significantly degrade image quality and impede accurate diagnosis. Supervised metal artifact reduction (MAR) methods, trained using simulated datasets, often stru... 详细信息
来源: 评论
DMNER: Biomedical Named Entity Recognition by Detection and Matching
DMNER: Biomedical Named Entity Recognition by Detection and ...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Bian, Junyi Jiang, Rongze Zhai, Weiqi Huang, Tianyang Huang, Xiaodi Zhou, Hong Zhu, Shanfeng Fudan University School of Computer Science Shanghai China Fudan University Institute of Science and Technology for Brain-Inspired Intelligence Shanghai China Charles Sturt University School of Computing Mathematics and Engineering Nsw Australia Atypon Systems Llc United Kingdom Zhangjiang Fudan International Innovation Center Fudan University Institute of Science and Technology for Brain-Inspired Intelligence Moe Frontiers Center for Brain Science Shanghai Key Lab of Intelligent Information Processing Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Shanghai China
Biomedical Named Entity Recognition (NER) is a crucial task in extracting information from biomedical texts. However, the diversity of professional terminology, semantic complexity, and the widespread presence of syno... 详细信息
来源: 评论
TaMMa: Target-driven Multi-subscene Mobile Manipulation  8
TaMMa: Target-driven Multi-subscene Mobile Manipulation
收藏 引用
8th Conference on Robot Learning, CoRL 2024
作者: Hou, Jiawei Wang, Tianyu Pan, Tongying Wang, Shouyan Xue, Xiangyang Fu, Yanwei School of Computer Science Fudan University China Institute of Science and Technology for Brain-Inspired Intelligence Fudan University China School of Data Science Fudan University China Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence Shanghai Key Lab of Intelligent Information Processing Technology Innovation Center of Calligraphy and Painting Digital Generation Ministry of Culture and Tourism China
For everyday service robotics, the ability to navigate back and forth based on tasks in multi-subscene environments and perform delicate manipulations is crucial and highly practical. While existing robotics primarily... 详细信息
来源: 评论