咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 103 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 69 篇 工学
    • 54 篇 计算机科学与技术...
    • 49 篇 软件工程
    • 23 篇 生物工程
    • 18 篇 生物医学工程(可授...
    • 17 篇 信息与通信工程
    • 15 篇 光学工程
    • 9 篇 电气工程
    • 9 篇 控制科学与工程
    • 8 篇 电子科学与技术(可...
    • 8 篇 化学工程与技术
    • 3 篇 林业工程
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 安全科学与工程
  • 49 篇 理学
    • 25 篇 生物学
    • 19 篇 数学
    • 15 篇 物理学
    • 10 篇 化学
    • 9 篇 统计学(可授理学、...
    • 6 篇 系统科学
  • 18 篇 医学
    • 18 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
    • 3 篇 公共卫生与预防医...
    • 2 篇 特种医学
    • 2 篇 医学技术(可授医学...
  • 18 篇 管理学
    • 13 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
  • 3 篇 农学

主题

  • 5 篇 face recognition
  • 5 篇 semantics
  • 5 篇 training
  • 4 篇 image segmentati...
  • 4 篇 magnetic resonan...
  • 4 篇 character recogn...
  • 3 篇 distillation
  • 3 篇 generative adver...
  • 3 篇 electroencephalo...
  • 2 篇 conferences
  • 2 篇 medical image cl...
  • 2 篇 deep learning
  • 2 篇 deep neural netw...
  • 2 篇 task analysis
  • 2 篇 brain-computer i...
  • 2 篇 signal processin...
  • 2 篇 lung
  • 2 篇 computerized tom...
  • 2 篇 decision trees
  • 2 篇 gaussian distrib...

机构

  • 27 篇 shanghai center ...
  • 17 篇 shanghai key lab...
  • 14 篇 institute of sci...
  • 13 篇 shanghai key lab...
  • 11 篇 institute of sci...
  • 11 篇 school of comput...
  • 9 篇 moe frontiers ce...
  • 7 篇 institute of sci...
  • 7 篇 shanghai key lab...
  • 7 篇 zhangjiang fudan...
  • 5 篇 national key lab...
  • 5 篇 national enginee...
  • 5 篇 school of electr...
  • 5 篇 university of ch...
  • 5 篇 center for brain...
  • 5 篇 the state key la...
  • 5 篇 college of compu...
  • 5 篇 the shanghai cen...
  • 4 篇 ministry of educ...
  • 4 篇 school of cyber ...

作者

  • 24 篇 shan hongming
  • 22 篇 zhang junping
  • 15 篇 hongming shan
  • 13 篇 junping zhang
  • 11 篇 huang zhizhong
  • 9 篇 lei yiming
  • 9 篇 fu yanwei
  • 8 篇 li zilong
  • 8 篇 xue xiangyang
  • 8 篇 yiming lei
  • 6 篇 zhu shanfeng
  • 5 篇 huang xiaodi
  • 5 篇 bian junyi
  • 5 篇 zhang yi
  • 4 篇 zhizhong huang
  • 4 篇 zhai weiqi
  • 4 篇 li yuanqing
  • 4 篇 ma chenglong
  • 4 篇 zilong li
  • 3 篇 bakas spyridon

语言

  • 99 篇 英文
  • 2 篇 其他
  • 2 篇 中文
检索条件"机构=Center for Brain Computer Interfaces and Brain Information Processing"
103 条 记 录,以下是11-20 订阅
排序:
QS-Craft: Learning to Quantize, Scrabble and Craft for Conditional Human Motion Animation  16th
QS-Craft: Learning to Quantize, Scrabble and Craft for Co...
收藏 引用
16th Asian Conference on computer Vision, ACCV 2022
作者: Hong, Yuxin Qian, Xuelin Luo, Simian Guo, Guodong Xue, Xiangyang Fu, Yanwei School of Data Science and MOE Frontiers Center for Brain Science Shanghai Key Lab of Intelligent Information Processing Fudan University Shanghai China School of Computer Science Shanghai Key Lab of Intelligent Information Processing Fudan University Shanghai China Department of CSEE West Virginia University Morgantown United States
This paper studies the task of conditional Human Motion Animation (cHMA). Given a source image and a driving video, the model should animate the new frame sequence, in which the person in the source image should perfo... 详细信息
来源: 评论
Denoising diffusion path: attribution noise reduction with an auxiliary diffusion model  24
Denoising diffusion path: attribution noise reduction with a...
收藏 引用
Proceedings of the 38th International Conference on Neural information processing Systems
作者: Yiming Lei Zilong Li Junping Zhang Hongming Shan Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University Institute of Science and Technology for Brain-Inspired Intelligence & MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence & MOE Frontiers Center for Brain Science Fudan University
The explainability of deep neural networks (DNNs) is critical for trust and reliability in AI systems. Path-based attribution methods, such as integrated gradients (IG), aim to explain predictions by accumulating grad...
来源: 评论
Algorithmic Diversity and Tiny Models: Comparing Binary Networks and the Fruit Fly Algorithm on Document Representation Tasks  3
Algorithmic Diversity and Tiny Models: Comparing Binary Netw...
收藏 引用
3rd Workshop on Simple and Efficient Natural Language processing, SustaiNLP 2022
作者: Ceron, Tanise Truong, Nhut Herbelot, Aurelie Institute for Natural Language Processing University of Stuttgart Germany Center for Mind/Brain Sciences University of Trento Italy Department of Information Engineering and Computer Science University of Trento Italy
Neural language models have seen a dramatic increase in size in the last years. While many still advocate that 'bigger is better', work in model distillation has shown that the number of parameters used by ver... 详细信息
来源: 评论
Deep learning-based activity recognition and fine motor identification using 2D skeletons of cynomolgus monkeys
收藏 引用
Zoological Research 2023年 第5期44卷 967-980页
作者: Chuxi Li Zifan Xiao Yerong Li Zhinan Chen Xun Ji Yiqun Liu Shufei Feng Zhen Zhang Kaiming Zhang Jianfeng Feng Trevor W.Robbins Shisheng Xiong Yongchang Chen Xiao Xiao School of Information Science and Technology Micro Nano System Center Fudan UniversityShanghai 200433China Department of Anesthesiology Huashan HospitalKey Laboratory of Computational Neuroscience and Brain-Inspired IntelligenceMinistry of EducationBehavioral and Cognitive Neuroscience CenterInstitute of Science and Technology for Brain-Inspired IntelligenceMOE Frontiers Center for Brain ScienceFudan UniversityShanghai 200433China Kuang Yaming Honors School Nanjing UniversityNanjingJiangsu 210023China Shanghai Key Laboratory of Intelligent Information Processing School of Computer ScienceFudan UniversityShanghai 200433China State Key Laboratory of Primate Biomedical Research Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan 650500China New Vision World LLC. Aliso ViejoCalifornia 92656USA Behavioural and Clinical Neuroscience Institute University of CambridgeCambridgeCB21TNUK
Video-based action recognition is becoming a vital tool in clinical research and neuroscientific study for disorder detection and ***,action recognition currently used in non-human primate(NHP)research relies heavily ... 详细信息
来源: 评论
Online Prototype Learning for Online Continual Learning
Online Prototype Learning for Online Continual Learning
收藏 引用
International Conference on computer Vision (ICCV)
作者: Yujie Wei Jiaxin Ye Zhizhong Huang Junping Zhang Hongming Shan Institute of Science and Technology for Brain-Inspired Intelligence Fudan University Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University MOE Frontiers Center for Brain Science Fudan University Shanghai Center for Brain Science and Brain-Inspired Technology
Online continual learning (CL) studies the problem of learning continuously from a single-pass data stream while adapting to new data and mitigating catastrophic forgetting. Recently, by storing a small subset of old ...
来源: 评论
VANER: Leveraging Large Language Model for Versatile and Adaptive Biomedical Named Entity Recognition  27
VANER: Leveraging Large Language Model for Versatile and Ada...
收藏 引用
27th European Conference on Artificial Intelligence, ECAI 2024
作者: Bian, Junyi Zhai, Weiqi Huang, Xiaodi Zheng, Jiaxuan Zhu, Shanfeng School of Computer Science Fudan University Shanghai200433 China Institute of Science and Technology for Brain-Inspired Intelligence Fudan University China Ministry of Education Shanghai200433 China MOE Frontiers Center for Brain Science Fudan University Shanghai200433 China Zhangjiang Fudan International Innovation Center Shanghai200433 China Shanghai Key Lab of Intelligent Information Processing Fudan University Shanghai200433 China School of Computing and Mathematics Charles Sturt University AlburyNSW2640 Australia
The prevalent solution for BioNER involves using representation learning techniques combined with sequence ***, such methods are inherently task-specific, demonstrate poor generalizability, and often require a dedicat... 详细信息
来源: 评论
Fan-Net: Fourier-Based Adaptive Normalization for Cross-Domain Stroke Lesion Segmentation
Fan-Net: Fourier-Based Adaptive Normalization for Cross-Doma...
收藏 引用
International Conference on Acoustics, Speech, and Signal processing (ICASSP)
作者: Weiyi Yu Yiming Lei Hongming Shan Institute of Science and Technology for Brain-Inspired Intelligence Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Shanghai Center for Brain Science and Brain-Inspired Technology Shanghai China
Since stroke is the main cause of various cerebrovascular diseases, deep learning-based stroke lesion segmentation on magnetic resonance (MR) images has attracted considerable attention. However, the existing methods ... 详细信息
来源: 评论
brain-inspired artificial intelligence research: A review
收藏 引用
Science China(Technological Sciences) 2024年 第8期67卷 2282-2296页
作者: WANG GuoYin BAO HuaNan LIU Qun ZHOU TianGang WU Si HUANG TieJun YU ZhaoFei LU CeWu GONG YiHong ZHANG ZhaoXiang HE Sheng Chongqing Key Laboratory of Computational Intelligence Chongqing University of Posts and TelecommunicationsChongqing 400065China Key Laboratory of Cyberspace Big Data Intelligent Security Chongqing University of Posts and TelecommunicationsChongqing 400065China College of Computer and Information Science Chongqing Normal UniversityChongqing 401331China State Key Laboratory of Brain and Cognitive Science Institute of BiophysicsChinese Academy of SciencesBeijing 100101China School of Psychological and Cognitive Sciences Peking UniversityBeijing 100871China State Key Laboratory of Multimedia Information Processing School of Computer SciencePeking UniversityBeijing 100871China Department of Computer Science School of ElectronicsInformation and Electrical EngineeringShanghai Jiao Tong UniversityShanghai 200240China Faculty of Electronic and Information Engineering Xi’an Jiaotong UniversityXi’an 710049China The Center for Research on Intelligent Perception and Computing Institute of AutomationChinese Academy of SciencesBeijing 100190China Institute of Biophysics Chinese Academy of SciencesBeijing 100101China
Artificial intelligence(AI) systems surpass certain human intelligence abilities in a statistical sense as a whole, but are not yet the true realization of these human intelligence abilities and behaviors. There are d... 详细信息
来源: 评论
Forget less,count better:a domain-incremental self-distillation learning benchmark for lifelong crowd counting
收藏 引用
Frontiers of information Technology & Electronic Engineering 2023年 第2期24卷 187-202页
作者: Jiaqi GAO Jingqi LI Hongming SHAN Yanyun QU James ZWANG Fei-Yue WANG Junping ZHANG Shanghai Key Laboratory of Intelligent Information Processing School of Computer ScienceFudan UniversityShanghai 200433China Institute of Science and Technology for Brain-inspired Intelligence Fudan UniversityShanghai 200433China Shanghai Center for Brain Science and Brain-inspired Technology Shanghai 201210China School of Information Science and Technology Xiamen UniversityXiamen 361005China College of Information Sciences and Technology the Pennsylvania State UniversityUniversity ParkPA 16802USA State Key Laboratory of Management and Control for Complex Systems Institute of AutomationChinese Academy of SciencesBeijing 100190China
Crowd counting has important applications in public safety and pandemic control.A robust and practical crowd counting system has to be capable of continuously learning with the newly incoming domain data in real-world... 详细信息
来源: 评论
Twin Contrastive Learning with Noisy Labels
Twin Contrastive Learning with Noisy Labels
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Zhizhong Huang Junping Zhang Hongming Shan Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Institute of Science and Technology for Brain-inspired Intelligence and MOE Frontiers Center for Brain Science Fudan University Shanghai China Shanghai Center for Brain Science and Brain-inspired Technology Shanghai China
Learning from noisy data is a challenging task that sig-nificantly degenerates the model performance. In this paper, we present TCL, a novel twin contrastive learning model to learn robust representations and handle n...
来源: 评论