咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 103 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 69 篇 工学
    • 54 篇 计算机科学与技术...
    • 49 篇 软件工程
    • 23 篇 生物工程
    • 18 篇 生物医学工程(可授...
    • 17 篇 信息与通信工程
    • 15 篇 光学工程
    • 9 篇 电气工程
    • 9 篇 控制科学与工程
    • 8 篇 电子科学与技术(可...
    • 8 篇 化学工程与技术
    • 3 篇 林业工程
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 安全科学与工程
  • 49 篇 理学
    • 25 篇 生物学
    • 19 篇 数学
    • 15 篇 物理学
    • 10 篇 化学
    • 9 篇 统计学(可授理学、...
    • 6 篇 系统科学
  • 18 篇 医学
    • 18 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
    • 3 篇 公共卫生与预防医...
    • 2 篇 特种医学
    • 2 篇 医学技术(可授医学...
  • 18 篇 管理学
    • 13 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
  • 3 篇 农学

主题

  • 5 篇 face recognition
  • 5 篇 semantics
  • 5 篇 training
  • 4 篇 image segmentati...
  • 4 篇 magnetic resonan...
  • 4 篇 character recogn...
  • 3 篇 distillation
  • 3 篇 generative adver...
  • 3 篇 electroencephalo...
  • 2 篇 conferences
  • 2 篇 medical image cl...
  • 2 篇 deep learning
  • 2 篇 deep neural netw...
  • 2 篇 task analysis
  • 2 篇 brain-computer i...
  • 2 篇 signal processin...
  • 2 篇 lung
  • 2 篇 computerized tom...
  • 2 篇 decision trees
  • 2 篇 gaussian distrib...

机构

  • 27 篇 shanghai center ...
  • 17 篇 shanghai key lab...
  • 14 篇 institute of sci...
  • 13 篇 shanghai key lab...
  • 11 篇 institute of sci...
  • 11 篇 school of comput...
  • 9 篇 moe frontiers ce...
  • 7 篇 institute of sci...
  • 7 篇 shanghai key lab...
  • 7 篇 zhangjiang fudan...
  • 5 篇 national key lab...
  • 5 篇 national enginee...
  • 5 篇 school of electr...
  • 5 篇 university of ch...
  • 5 篇 center for brain...
  • 5 篇 the state key la...
  • 5 篇 college of compu...
  • 5 篇 the shanghai cen...
  • 4 篇 ministry of educ...
  • 4 篇 school of cyber ...

作者

  • 24 篇 shan hongming
  • 22 篇 zhang junping
  • 15 篇 hongming shan
  • 13 篇 junping zhang
  • 11 篇 huang zhizhong
  • 9 篇 lei yiming
  • 9 篇 fu yanwei
  • 8 篇 li zilong
  • 8 篇 xue xiangyang
  • 8 篇 yiming lei
  • 6 篇 zhu shanfeng
  • 5 篇 huang xiaodi
  • 5 篇 bian junyi
  • 5 篇 zhang yi
  • 4 篇 zhizhong huang
  • 4 篇 zhai weiqi
  • 4 篇 li yuanqing
  • 4 篇 ma chenglong
  • 4 篇 zilong li
  • 3 篇 bakas spyridon

语言

  • 99 篇 英文
  • 2 篇 其他
  • 2 篇 中文
检索条件"机构=Center for Brain Computer Interfaces and Brain Information Processing"
103 条 记 录,以下是51-60 订阅
排序:
Pano-NeRF: Synthesizing High Dynamic Range Novel Views with Geometry from Sparse Low Dynamic Range Panoramic Images
arXiv
收藏 引用
arXiv 2023年
作者: Lu, Zhan Zheng, Qian Shi, Boxin Jiang, Xudong School of Electrical and Electronic Engineering Nanyang Technological University Singapore College of Computer Science and Technology Zhejiang University China The State Key Lab of Brain-Machine Intelligence Zhejiang University China National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University China National Engineering Research Center of Visual Technology School of Computer Science Peking University China
Panoramic imaging research on geometry recovery and High Dynamic Range (HDR) reconstruction becomes a trend with the development of Extended Reality (XR). Neural Radiance Fields (NeRF) provide a promising scene repres... 详细信息
来源: 评论
When age-invariant face recognition meets face age synthesis: A multi-task learning framework
arXiv
收藏 引用
arXiv 2021年
作者: Huang, Zhizhong Zhang, Junping Shan, Hongming Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China Institute of Science and Technology for Brain-inspired Intelligence MOE Frontiers Center for Brain Science Fudan University Shanghai200433 China Shanghai Center for Brain Science and Brain-inspired Technology Shanghai201210 China
To minimize the effects of age variation in face recognition, previous work either extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features, called age... 详细信息
来源: 评论
Learning Representation for Clustering via Prototype Scattering and Positive Sampling
arXiv
收藏 引用
arXiv 2021年
作者: Huang, Zhizhong Chen, Jie Zhang, Junping Shan, Hongming The Shanghai Key Lab of Intelligent Information Processing The School of Computer Science Fudan University Shanghai200433 China Institute of Science and Technology for Brain-inspired Intelligence MOE Frontiers Center for Brain Science Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Fudan University Shanghai200433 China Shanghai Center for Brain Science and Brain-inspired Technology Shanghai201210 China
Existing deep clustering methods rely on either contrastive or non-contrastive representation learning for downstream clustering task. Contrastive-based methods thanks to negative pairs learn uniform representations f... 详细信息
来源: 评论
DANI-Net: Uncalibrated Photometric Stereo by Differentiable Shadow Handling, Anisotropic Reflectance Modeling, and Neural Inverse Rendering
DANI-Net: Uncalibrated Photometric Stereo by Differentiable ...
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Zongrui Li Qian Zheng Boxin Shi Gang Pan Xudong Jiang School of Electrical and Electronic Engineering Nanyang Technological University Singapore The State Key Lab of Brain-Machine Intelligence Zhejiang University Hangzhou China College of Computer Science and Technology Zhejiang University Hangzhou China National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University Beijing China National Engineering Research Center of Visual Technology School of Computer Science Peking University Beijing China
Uncalibrated photometric stereo (UPS) is challenging due to the inherent ambiguity brought by the unknown light. Although the ambiguity is alleviated on non-Lambertian objects, the problem is still difficult to solve ...
来源: 评论
DANI-Net: Uncalibrated Photometric Stereo by Differentiable Shadow Handling, Anisotropic Reflectance Modeling, and Neural Inverse Rendering
arXiv
收藏 引用
arXiv 2023年
作者: Li, Zongrui Zheng, Qian Shi, Boxin Pan, Gang Jiang, Xudong School of Electrical and Electronic Engineering Nanyang Technological University Singapore The State Key Lab of Brain-Machine Intelligence Zhejiang University Hangzhou China College of Computer Science and Technology Zhejiang University Hangzhou China National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University Beijing China National Engineering Research Center of Visual Technology School of Computer Science Peking University Beijing China
Uncalibrated photometric stereo (UPS) is challenging due to the inherent ambiguity brought by the unknown light. Although the ambiguity is alleviated on non-Lambertian objects, the problem is still difficult to solve ... 详细信息
来源: 评论
DU-GAN: Generative adversarial networks with dual-domain U-net based discriminators for low-dose CT denoising
arXiv
收藏 引用
arXiv 2021年
作者: Huang, Zhizhong Zhang, Junping Zhang, Yi Shan, Hongming The Shanghai Key Lab of Intelligent Information Processing The School of Computer Science Fudan University Shanghai200433 China The College of Computer Science Sichuan University Chengdu610065 China The Institute of Science and Technology for Brain-Inspired Intelligence MOE Frontiers Center for Brain Science Fudan University Shanghai200433 China The Shanghai Center for Brain Science and Brain-Inspired Technology Shanghai201210 China
Low-dose computed tomography (LDCT) has drawn major attention in the medical imaging field due to the potential health risks of CT-associated X-ray radiation to patients. Reducing the radiation dose, however, decrease... 详细信息
来源: 评论
AgeFlow: Conditional age progression and regression with normalizing flows
arXiv
收藏 引用
arXiv 2021年
作者: Huang, Zhizhong Chen, Shouzhen Zhang, Junping Shan, Hongming Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China Inst. of Sci. and Technol. for Brain-inspired Intell. and MOE Frontiers Center for Brain Science Fudan University Shanghai200433 China Shanghai Center for Brain Science and Brain-inspired Technology Shanghai200031 China
Age progression and regression aim to synthesize photorealistic appearance of a given face image with aging and rejuvenation effects, respectively. Existing generative adversarial networks (GANs) based methods suffer ... 详细信息
来源: 评论
Deep Rank-Consistent Pyramid Model for Enhanced Crowd Counting
arXiv
收藏 引用
arXiv 2022年
作者: Gao, Jiaqi Huang, Zhizhong Lei, Yiming Shan, Hongming Wang, James Z. Wang, Fei-Yue Zhang, Junping The Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China The Institute of Science and Technology for Brain-inspired Intelligence MOE Frontiers Center for Brain Science Fudan University Shanghai200433 China The Shanghai Center for Brain Science and Brain-Inspired Technology Shanghai201210 China The College of Information Sciences and Technology The Pennsylvania State University University ParkPA16802 United States The State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China The Institute of Systems Engineering Macau University of Science and Technology China Qingdao Academy of Intelligent Industries Qingdao266109 China
Most conventional crowd counting methods utilize a fully-supervised learning framework to establish a mapping between scene images and crowd density maps. They usually rely on a large quantity of costly and time-inten... 详细信息
来源: 评论
Can action be imitated? Learn to reconstruct and transfer human dynamics from videos
arXiv
收藏 引用
arXiv 2021年
作者: Fu, Yuqian Fu, Yanwei Jiang, Yu-Gang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University China School of Data Science MOE Frontiers Center for Brain Science Fudan University China
Given a video demonstration, can we imitate the action contained in this video? In this paper, we introduce a novel task, dubbed mesh-based action imitation. The goal of this task is to enable an arbitrary target huma... 详细信息
来源: 评论
Learning compositional representation for 4D captures with neural ODE
arXiv
收藏 引用
arXiv 2021年
作者: Jiang, Boyan Zhang, Yinda Wei, Xingkui Xue, Xiangyang Fu, Yanwei School of Computer Science Fudan University China Google School of Data Science MOE Frontiers Center for Brain Science Shanghai Key Lab of Intelligent Information Processing Fudan University China
Learning based representation has become the key to the success of many computer vision systems. While many 3D representations have been proposed, it is still an unaddressed problem how to represent a dynamically chan... 详细信息
来源: 评论