咨询与建议

限定检索结果

文献类型

  • 59 篇 会议
  • 26 篇 期刊文献

馆藏范围

  • 85 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 61 篇 工学
    • 46 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 13 篇 生物医学工程(可授...
    • 11 篇 控制科学与工程
    • 10 篇 信息与通信工程
    • 10 篇 生物工程
    • 8 篇 光学工程
    • 4 篇 电气工程
    • 3 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 安全科学与工程
  • 30 篇 理学
    • 16 篇 物理学
    • 11 篇 数学
    • 10 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 系统科学
  • 24 篇 管理学
    • 15 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
  • 11 篇 医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 临床医学
    • 8 篇 药学(可授医学、理...
  • 2 篇 农学
    • 2 篇 作物学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 14 篇 electroencephalo...
  • 11 篇 feature extracti...
  • 8 篇 emotion recognit...
  • 7 篇 brain modeling
  • 5 篇 support vector m...
  • 5 篇 correlation
  • 5 篇 electrooculograp...
  • 5 篇 training
  • 4 篇 machine translat...
  • 4 篇 accuracy
  • 3 篇 generative adver...
  • 3 篇 forehead
  • 3 篇 sleep
  • 3 篇 adaptation model...
  • 3 篇 eye movements
  • 2 篇 error correction
  • 2 篇 sieves
  • 2 篇 spatio-temporal ...
  • 2 篇 electrophysiolog...
  • 2 篇 physiology

机构

  • 18 篇 center for brain...
  • 6 篇 key lab. of shan...
  • 6 篇 moe-microsoft ke...
  • 5 篇 brain science an...
  • 5 篇 the state key la...
  • 5 篇 college of compu...
  • 4 篇 moe-microsoft ke...
  • 3 篇 department of co...
  • 3 篇 moe key laborato...
  • 3 篇 moe-microsoft ke...
  • 3 篇 shanghai key lab...
  • 3 篇 school of comput...
  • 3 篇 research center ...
  • 3 篇 center for brain...
  • 3 篇 moe-microsoft ke...
  • 3 篇 center for brain...
  • 3 篇 key laboratory o...
  • 3 篇 moe frontier sci...
  • 2 篇 center for brain...
  • 2 篇 department of el...

作者

  • 30 篇 lu bao-liang
  • 23 篇 zhao hai
  • 20 篇 bao-liang lu
  • 13 篇 wei-long zheng
  • 7 篇 hai zhao
  • 6 篇 zheng wei-long
  • 6 篇 wang rui
  • 4 篇 tang huajin
  • 4 篇 jia zhongye
  • 4 篇 wang xiao-lin
  • 3 篇 sumita eiichro
  • 3 篇 pan gang
  • 3 篇 utiyama masao
  • 3 篇 li-ming zhao
  • 2 篇 dan peng
  • 2 篇 kotrotsou aikate...
  • 2 篇 zhou guodong
  • 2 篇 wiest roland
  • 2 篇 ferrante enzo
  • 2 篇 bakas spyridon

语言

  • 81 篇 英文
  • 4 篇 其他
检索条件"机构=Center for Brain-Like Computing and Machine Intelligence"
85 条 记 录,以下是71-80 订阅
排序:
Investigating EEG-Based Functional Connectivity Patterns for Multimodal Emotion Recognition
arXiv
收藏 引用
arXiv 2020年
作者: Wu, Xun Zheng, Wei-Long Lu, Bao-Liang Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Brain Science and Technology Research Center Qing Yuan Research Institute Shanghai Jiao Tong University 800 Dong Chuan Road Shanghai200240 China Clinical Data Animation Center Department of Neurology Massachusetts General Hospital Harvard Medical School 55 Fruit Street BostonMA United States
Compared with the rich studies on the motor brain-computer interface (BCI), the recently emerging affective BCI presents distinct challenges since the brain functional connectivity networks involving emotion are not w... 详细信息
来源: 评论
Darwin3: A large-scale neuromorphic chip with a Novel ISA and On-Chip Learning
arXiv
收藏 引用
arXiv 2023年
作者: Ma, De Jin, Xiaofei Sun, Shichun Li, Yitao Wu, Xundong Hu, Youneng Yang, Fangchao Tang, Huajin Zhu, Xiaolei Lin, Peng Pan, Gang College of Computer Science and Technology Zhejiang University Hangzhou310058 China Research Center for Intelligent Computing Hardware Zhejiang Lab Hangzhou311121 China The State Key Lab of Brain-Machine Intelligence Zhejiang University Hangzhou310027 China MOE Frontier Science Center for Brain Science and Brain-Machine Integration Zhejiang University Hangzhou310027 China College of Micro-Nano College of Micro-Nano Electronics Zhejiang University Hangzhou311200 China
Spiking Neural Networks (SNNs) are gaining increasing attention for their biological plausibility and potential for improved computational efficiency. To match the high spatial-temporal dynamics in SNNs, neuromorphic ... 详细信息
来源: 评论
Universality of explosive percolation under product and sum rule
收藏 引用
Physical Review E 2023年 第3期108卷 034108-034108页
作者: Ziting Luo Wei Chen Jan Nagler LMIB and School of Mathematical Sciences Beihang University Beijing 100191 China Institute of Artificial Intelligence Beihang University Beijing 100191 China Zhongguancun Laboratory Beijing 100094 People's Republic of China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing 100191 China Deep Dynamics Centre for Human and Machine Intelligence Frankfurt School of Finance and Management Frankfurt am Main 60322 Germany
We study explosive percolation processes on random graphs for the so-called product rule (PR) and sum rule (SR), in which M candidate edges are randomly selected from all possible ones at each time step, and the edge ... 详细信息
来源: 评论
From EEG to Eye Movements: Cross-modal Emotion Recognition Using Constrained Adversarial Network with Dual Attention
收藏 引用
IEEE Transactions on Affective computing 2024年
作者: Wang, Yiting Liu, Jia-Wen Lu, Bao-Liang Zheng, Wei-Long Karolinska Institutet Department of Clinical Neuroscience Stockholm171 77 Sweden Shanghai Jiao Tong University China Shanghai Jiao Tong University Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai200240 China Shanghai Jiao Tong University School of Medicine RuiJin-Mihoyo Laboratory Clinical Neuroscience Center RuiJin Hospital Shanghai200020 China Shanghai Emotionhelper Technology Co. Ltd. Shanghai China
Emotion recognition is a fundamental part of affective computing, obtaining performance gain from multimodal methods. Electroencephalography (EEG) and eye movements are extensively used as they contain complementary i... 详细信息
来源: 评论
Multimodal emotion recognition using deep canonical correlation analysis
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Wei Qiu, Jie-Lin Zheng, Wei-Long Lu, Bao-Liang Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai200240 China Brain Science and Technology Research Center Shanghai Jiao Tong University Shanghai200240 China Department of Electronic Engineering Shanghai Jiao Tong University Shanghai200240 China Department of Neurology Massachusetts General Hospital Harvard Medical School BostonMA02114 United States
Multimodal signals are more powerful than unimodal data for emotion recognition since they can represent emotions more comprehensively. In this paper, we introduce deep canonical correlation analysis (DCCA) to multimo... 详细信息
来源: 评论
Enhancing SNN-based Spatio-Temporal Learning: A Benchmark Dataset and Cross-Modality Attention Model
arXiv
收藏 引用
arXiv 2024年
作者: Zhou, Shibo Yang, Bo Yuan, Mengwen Jiang, Runhao Yan, Rui Pan, Gang Tang, Huajin Research Center for Data Hub and Security Zhejiang Lab Hangzhou China College of Computer Science and Technology Zhejiang University Hangzhou China Research Center for High Efficiency Computing System Zhejiang Lab Hangzhou China College of Computer Science and Technology Zhejiang University of Technology Hangzhou China The State Key Lab of Brain-Machine Intelligence Zhejiang University Hangzhou China
Spiking Neural Networks (SNNs), renowned for their low power consumption, brain-inspired architecture, and spatio-temporal representation capabilities, have garnered considerable attention in recent years. Similar to ... 详细信息
来源: 评论
Towards High-accuracy and Low-latency Spiking Neural Networks with Two-Stage Optimization
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Ziming Zhang, Yuhao Lian, Shuang Cui, Xiaoxin Yan, Rui Tang, Huajin College of Computer Science and Technology Zhejiang University Hangzhou310027 China Research Center for Intelligent Computing Hardware Zhejiang Lab Hangzhou311100 China School of Integrated Circuits Peking University Beijing100871 China College of Computer Science Zhejiang University of Technology Hangzhou310014 China State Key Laboratory of Brain-Machine Intelligence Zhejiang University Hangzhou310027 China
Spiking neural networks (SNNs) operating with asynchronous discrete events show higher energy efficiency with sparse computation. A popular approach for implementing deep SNNs is ANN-SNN conversion combining both effi... 详细信息
来源: 评论
Random Occlusion Recovery with Noise Channel for Person Re-identification  16th
Random Occlusion Recovery with Noise Channel for Person Re-i...
收藏 引用
16th International Conference on Intelligent computing, ICIC 2020
作者: Zhang, Kun Wu, Di Yuan, Changan Qin, Xiao Wu, Hongjie Zhao, Xingming Zhang, Lijun Du, Yuchuan Wang, Hanli Institute of Machine Learning and Systems Biology School of Electronics and Information Engineering Tongji University Shanghai China Guangxi Academy of Science Nanning530025 China School of Computer and Information Engineering Nanning Normal University Nanning530299 China School of Computer Science and Technology Soochow University Suzhou215006 China School of Electronic and Information Engineering Suzhou University of Science and Technology Suzhou215009 China Fudan University Shanghai200433 China Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Ministry of Education Shanghai China Collaborative Innovation Center of Intelligent New Energy Vehicle and School of Automotive Studies Tongji University Shanghai201804 China The Key Laboratory of Road and Traffic Engineering of the Ministry of Education Department of Transportation Engineering Tongji University Shanghai201804 China Department of Computer Science and Technology the Key Laboratory of Embedded System and Service Computing and Shanghai Institute of Intelligent Science and Technology Tongji University Shanghai200092 China
Person re-identification, as the basic task of a multi-camera surveillance system, plays an important role in a variety of surveillance applications. However, the current mainstream person re-identification model base... 详细信息
来源: 评论
26th Annual Computational Neuroscience Meeting (CNS*2017) of the Organization for Computational Neuroscience Antwerp, Belgium, July 15-20, 2017
收藏 引用
BMC NEUROSCIENCE 2017年 第Sup1期18卷 1-79页
作者: [Anonymous] Indiana University Purdue University Indianapolis Indianapolis IN 46032 USA Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN 46032 USA Department of Mathematics East Carolina University Greenville NC 27858 USA Jülich Supercomputing Centre Forschungszentrum Jülich 52425 Jülich Germany Future Systems Swiss National Supercomputing Centre 8092 Zurich Switzerland User Engagement and Support Swiss National Supercomputing Centre 6900 Lugano Switzerland Institut de Neurosciences des Systèmes Aix Marseille Univ 13005 Marseille France Simulation Lab Neuroscience Forschungszentrum Jülich Jülich Germany Department of Experimental Psychology Ghent University 9000 Ghent Belgium Donders Center for Cognitive Neuroimaging Radboud University 6525HR Nijmegen The Netherlands Department of Electrical Computer and Energy Engineering University of Colorado Boulder CO 80309 USA Department of Neurosurgery Johns Hopkins School of Medicine Baltimore MD 21287 USA Department of Neurology Johns Hopkins School of Medicine Baltimore MD 21287 USA Department of Otolaryngology Johns Hopkins School of Medicine Baltimore MD 21287 USA INSERM U968 Paris France Sorbonne Universités UPMC University Paris 06 UMR_S 968 Institut de la Vision Paris France CNRS UMR_7210 Paris France Department of Computer Architecture and Technology University of Granada (CITIC) Granada Spain Sorbonne Universités UPMC Univ Paris 06 INSERM CNRS Institut de la Vision Paris France Department of Adaptive Machine Systems Osaka University Osaka Japan Department of Computer Science University of Cergy-Pontoise Cergy-Pontoise France Department of Physics and Astronomy College of Charleston Charleston SC 29424 USA School of Physics Faculty of Science University of Sydney Sydney NSW 2006 Australia Center of Excellence for Integrative Brain Function Australian Research Council Sydney Australia Max Planck Institute for Human Cognitive and Bra
来源: 评论
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. D. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. Daum M. De Bruijne A. Depeursinge R. Dorent J. Egger D. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner D. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia D. Zimmerer D. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. Dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira D. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi D. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论