咨询与建议

限定检索结果

文献类型

  • 54 篇 期刊文献
  • 4 篇 会议
  • 1 册 图书

馆藏范围

  • 59 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 39 篇 工学
    • 22 篇 计算机科学与技术...
    • 18 篇 软件工程
    • 5 篇 信息与通信工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 2 篇 控制科学与工程
    • 2 篇 生物工程
    • 1 篇 机械工程
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 轻工技术与工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 城乡规划学
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 31 篇 理学
    • 12 篇 数学
    • 10 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 3 篇 物理学
    • 1 篇 化学
  • 7 篇 医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 3 篇 药学(可授医学、理...
  • 6 篇 农学
  • 5 篇 管理学
    • 3 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 4 篇 complex networks
  • 3 篇 machine learning
  • 2 篇 genome-wide asso...
  • 2 篇 real world netwo...
  • 2 篇 vaccines
  • 2 篇 time series
  • 2 篇 students
  • 1 篇 evolutionary & p...
  • 1 篇 complex systems
  • 1 篇 indirect interac...
  • 1 篇 message passing
  • 1 篇 theory of comput...
  • 1 篇 extendedstate ob...
  • 1 篇 active disturban...
  • 1 篇 computer hardwar...
  • 1 篇 generalized exte...
  • 1 篇 high level langu...
  • 1 篇 percolation
  • 1 篇 collective behav...
  • 1 篇 big data

机构

  • 6 篇 department of cl...
  • 5 篇 department of ep...
  • 4 篇 research centre ...
  • 4 篇 advanced combina...
  • 4 篇 department of ca...
  • 4 篇 university of ex...
  • 4 篇 center for compu...
  • 3 篇 department of cl...
  • 3 篇 nihr blood and t...
  • 3 篇 dasman diabetes ...
  • 3 篇 department of ne...
  • 3 篇 center for diabe...
  • 3 篇 kaiser permanent...
  • 3 篇 school of public...
  • 3 篇 department of me...
  • 3 篇 department of bi...
  • 3 篇 human genome seq...
  • 3 篇 department of cl...
  • 3 篇 department of bi...
  • 3 篇 princess al-jawh...

作者

  • 5 篇 vilmantas giedra...
  • 5 篇 timothy m frayli...
  • 5 篇 danish saleheen
  • 5 篇 andrew t hatters...
  • 5 篇 eleftheria zeggi...
  • 5 篇 mark i mccarthy
  • 4 篇 terho lehtimäki
  • 4 篇 maggie c y ng
  • 4 篇 andrew r wood
  • 4 篇 leslie a lange
  • 4 篇 francis s collin...
  • 4 篇 stella trompet
  • 4 篇 konstantin strau...
  • 4 篇 naveed sattar
  • 4 篇 jette bork-jense...
  • 4 篇 adam s butterwor...
  • 4 篇 xueling sim
  • 4 篇 vorobyev ilya
  • 4 篇 ahn yong-yeol
  • 3 篇 bong-jo kim

语言

  • 58 篇 英文
  • 1 篇 其他
检索条件"机构=Center for Complex Networks and Social Data Science"
59 条 记 录,以下是1-10 订阅
排序:
The Map Equation Goes Neural: Mapping Network Flows with Graph Neural networks  38
The Map Equation Goes Neural: Mapping Network Flows with Gra...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Blöcker, Christopher Tan, Chester Scholtes, Ingo Data Analytics Group Department of Informatics University of Zurich Switzerland Machine Learning for Complex Networks Center for Artificial Intelligence and Data Science Julius-Maximilians-Universität Würzburg Germany
Community detection is an essential tool for unsupervised data exploration and revealing the organisational structure of networked systems. With a long history in network science, community detection typically relies ...
来源: 评论
Using time-aware graph neural networks to predict temporal centralities in dynamic graphs  24
Using time-aware graph neural networks to predict temporal c...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Franziska Heeg Ingo Scholtes Chair of Machine Learning for Complex Networks Center for Artificial Intelligence and Data Science (CAIDAS) Julius-Maximilans-Universität Würzburg
Node centralities play a pivotal role in network science, social network analysis, and recommender systems. In temporal data, static path-based centralities like closeness or betweenness can give misleading results ab...
来源: 评论
The map equation goes neural: mapping network flows with graph neural networks  24
The map equation goes neural: mapping network flows with gra...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Christopher Blöcker Chester Tan Ingo Scholtes Data Analytics Group Department of Informatics University of Zurich Switzerland Chair of Machine Learning for Complex Networks Center for Artificial Intelligence and Data Science Julius-Maximilians-Universität Würzburg Germany
Community detection is an essential tool for unsupervised data exploration and revealing the organisational structure of networked systems. With a long history in network science, community detection typically relies ...
来源: 评论
Evolutionary game selection creates cooperative environments
收藏 引用
Physical Review E 2024年 第1期110卷 014306-014306页
作者: Onkar Sadekar Andrea Civilini Jesús Gómez-Gardeñes Vito Latora Federico Battiston Department of Network and Data Science School of Mathematical Sciences Dipartimento di Fisica ed Astronomia Department of Condensed Matter Physics GOTHAM Laboratory Institute of Biocomputation and Physics of Complex Systems (BIFI) Center for Computational Social Science A-1080 Vienna Austria
The emergence of collective cooperation in competitive environments is a well-known phenomenon in biology, economics, and social systems. While most evolutionary game models focus on the evolution of strategies for a ... 详细信息
来源: 评论
Nonparametric inference of higher order interaction patterns in networks
arXiv
收藏 引用
arXiv 2024年
作者: Wegner, Anatol E. Olhede, Sofia C. Machine Learning for Complex Networks Center for Artificial Intelligence and Data Science University of Würzburg Würzburg97070 Germany Institute of Mathematics École Polytechnique Fédérale de Lausanne Lausanne1015 Switzerland
We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs. The method is based on a class of analytically solvable generative ... 详细信息
来源: 评论
Generalized-Extended-State-Observer and Equivalent-Input-Disturbance Methods for Active Disturbance Rejection: Deep Observation and Comparison
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第4期10卷 957-968页
作者: Jinhua She Kou Miyamoto Qing-Long Han Min Wu Hiroshi Hashimoto Qing-Guo Wang School of Engineering Tokyo University of TechnologyHachiojiTokyo 192-0982Japan K.Miyamoto is with the Institute of Technology Shimizu CorporationKotoTokyo 135-0044Japan School of Science Computing and Engineering TechnologiesSwinburne University of TechnologyMelbourneVIC 3122Australia School of Automation China University of GeosciencesWuhan 430074 Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of EducationWuhan 430074China School of Industrial Technology Advanced Institute of Industrial TechnologyTokyo 140-0011Japan Institute of Artificial Intelligence and Future Networks Beijing Normal UniversityZhuhai 519087 Guangdong Key Lab of AI and Multi-Modal Data Processing Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science BNUHKBU United International College Zhuhai 519087China
Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state *** paper presents a deep observation on and a comparison between two of those methods:the... 详细信息
来源: 评论
Bayesian Inference of Transition Matrices from Incomplete Graph data with a Topological Prior
arXiv
收藏 引用
arXiv 2022年
作者: Perri, Vincenzo Petrović, Luka V. Scholtes, Ingo Data Analytics Group Department of Informatics University of Zurich Switzerland Machine Learning for Complex Networks Center for Artificial Intelligence and Data Science Julius-Maximilians-Universität Würzburg Germany
Many network analysis and graph learning techniques are based on discrete- or continuous-time models of random walks. To apply these methods, it is necessary to infer transition matrices that formalize the underlying ... 详细信息
来源: 评论
Heterogeneous peer effects of college roommates on academic performance
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Yi Zhou, Tao Gao, Jian CompleX Lab University of Electronic Science and Technology of China Chengdu China Big Data Research Center University of Electronic Science and Technology of China Chengdu China Center for Science of Science and Innovation Northwestern University EvanstonIL United States Kellogg School of Management Northwestern University EvanstonIL United States Northwestern Institute on Complex Systems Northwestern University EvanstonIL United States Faculty of Social Sciences The University of Hong Kong Hong Kong
Understanding how student peers influence learning outcomes is crucial for effective education management in complex social systems. The complexities of peer selection and evolving peer relationships, however, pose ch... 详细信息
来源: 评论
Indirect influence in social networks as an induced percolation phenomenon (vol 119, e2100151119, 2022)
收藏 引用
PROCEEDINGS OF THE NATIONAL ACADEMY OF scienceS OF THE UNITED STATES OF AMERICA 2022年 第24期119卷 e2100151119-e2100151119页
作者: Xie, Jiarong Wang, Xiangrong Feng, Ling Zhao, Jin-Hua Liu, Wenyuan Moreno, Yamir Hu, Yanqing School of Computer Science and Engineering Sun Yat-sen University 510006 Guangzhou China Institute of Future Networks Southern University of Science and Technology 518055 Shenzhen China Peng Cheng Laboratory 518066 Shenzhen China Institute of High Performance Computing A*STAR 138632 Singapore Department of Physics National University of Singapore 117551 Singapore Guangdong Provincial Key Laboratory of Nuclear Science Institute of Quantum Matter South China Normal University 510006 Guangzhou China Guangdong-Hong Kong Joint Laboratory of Quantum Matter Southern Nuclear Science Computing Center South China Normal University 510006 Guangzhou China Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University 637371 Singapore Institute for Biocomputation and Physics of Complex Systems University of Zaragoza 50018 Zaragoza Spain Department of Theoretical Physics University of Zaragoza 50018 Zaragoza Spain ISI Foundation 10126 Torino Italy Department of Statistics and Data Science College of Science Southern University of Science and Technology 518055 Shenzhen China
Percolation theory has been widely used to study phase transitions in network systems. It has also successfully explained various macroscopic spreading phenomena across different fields. Yet, the theoretical framework... 详细信息
来源: 评论
TRACE-Omicron: Policy Counterfactuals to Inform Mitigation of COVID-19 Spread in the United States
arXiv
收藏 引用
arXiv 2023年
作者: O’Gara, David Rosenblatt, Samuel F. Hébert-Dufresne, Laurent Purcell, Rob Kasman, Matt Hammond, Ross A. Center On Social Dynamics and Policy Brookings Institution Division of Computational and Data Sciences Washington University in St. Louis United States Vermont Complex Systems Center University of Vermont United States Department of Computer Science University of Vermont United States Brown School Washington University in St. Louis United States Santa Fe Institute United States
The Omicron wave was the largest wave of COVID-19 pandemic to date, more than doubling any other in terms of cases and hospitalizations in the United States. In this paper, we present a large-scale agent-based model o... 详细信息
来源: 评论