咨询与建议

限定检索结果

文献类型

  • 554 篇 期刊文献
  • 157 篇 会议

馆藏范围

  • 711 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 413 篇 工学
    • 212 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 72 篇 生物医学工程(可授...
    • 67 篇 生物工程
    • 65 篇 电子科学与技术(可...
    • 63 篇 电气工程
    • 55 篇 光学工程
    • 49 篇 化学工程与技术
    • 48 篇 信息与通信工程
    • 40 篇 控制科学与工程
    • 33 篇 仪器科学与技术
    • 24 篇 材料科学与工程(可...
    • 20 篇 动力工程及工程热...
    • 18 篇 力学(可授工学、理...
    • 18 篇 冶金工程
  • 403 篇 理学
    • 149 篇 物理学
    • 142 篇 数学
    • 97 篇 生物学
    • 66 篇 地球物理学
    • 60 篇 统计学(可授理学、...
    • 53 篇 化学
    • 20 篇 系统科学
  • 93 篇 医学
    • 66 篇 临床医学
    • 59 篇 基础医学(可授医学...
    • 39 篇 公共卫生与预防医...
    • 31 篇 药学(可授医学、理...
  • 80 篇 管理学
    • 42 篇 管理科学与工程(可...
    • 31 篇 图书情报与档案管...
    • 18 篇 工商管理
  • 25 篇 农学
  • 18 篇 法学
    • 16 篇 社会学
  • 6 篇 经济学
  • 4 篇 教育学
  • 2 篇 文学

主题

  • 21 篇 machine learning
  • 12 篇 deep learning
  • 8 篇 galaxies
  • 7 篇 stars
  • 7 篇 accuracy
  • 7 篇 training
  • 6 篇 feature extracti...
  • 5 篇 covid-19
  • 5 篇 surveys
  • 5 篇 generative adver...
  • 5 篇 supernovae
  • 5 篇 tensors
  • 5 篇 predictive model...
  • 5 篇 visualization
  • 5 篇 molecular dynami...
  • 4 篇 planets
  • 4 篇 integral equatio...
  • 4 篇 photometry
  • 4 篇 x-ray generation...
  • 4 篇 signal processin...

机构

  • 34 篇 center for compu...
  • 31 篇 center for data ...
  • 21 篇 space telescope ...
  • 15 篇 nasa ames resear...
  • 10 篇 department of ph...
  • 9 篇 center for astro...
  • 8 篇 department of ea...
  • 8 篇 department of as...
  • 8 篇 institute for gr...
  • 8 篇 department of as...
  • 7 篇 kotizarovci obse...
  • 7 篇 university of gl...
  • 7 篇 millennium insti...
  • 7 篇 university of ch...
  • 7 篇 department of ph...
  • 7 篇 computational en...
  • 6 篇 university of ta...
  • 6 篇 royal stoke univ...
  • 6 篇 department of bi...
  • 6 篇 leiden observato...

作者

  • 14 篇 strader jay
  • 12 篇 rodriguez joseph...
  • 11 篇 sand david j.
  • 10 篇 jenkins jon m.
  • 10 篇 latham david w.
  • 10 篇 quinn samuel n.
  • 9 篇 shporer avi
  • 9 篇 winn joshua n.
  • 8 篇 ciardi david r.
  • 8 篇 howell steve b.
  • 7 篇 stassun keivan g...
  • 7 篇 masuda naoki
  • 7 篇 zhang linfeng
  • 7 篇 seager s.
  • 7 篇 vorobyev ilya
  • 7 篇 spekkens kristin...
  • 7 篇 bieryla allyson
  • 7 篇 hongo kenta
  • 7 篇 collins karen a.
  • 7 篇 crnojević denija

语言

  • 649 篇 英文
  • 55 篇 其他
  • 6 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Center for Computational Data-Intensive Science and Engineering"
711 条 记 录,以下是261-270 订阅
排序:
Predictive performance of ROX index and its variations for NIV failure
收藏 引用
Medicina intensiva 2025年 502136页
作者: Lada Lijović Tomislav Radočaj Nataša Kovač Marinko Vučić Paul Elbers Department of Intensive Care Medicine Laboratory for Critical Care Computational Intelligence Amsterdam Medical Data Science Amsterdam Public Health Amsterdam Cardiovascular Science Amsterdam Institute for Infection and Immunity Amsterdam UMC University of Amsterdam Vrije Universiteit Amsterdam The Netherlands Department of Anesthesiology Intensive Care and Pain Management Sestre Milosrdnice University Hospital Center Zagreb Croatia. Electronic address: l.lijovic@amsterdamumc.nl. Department of Anesthesiology Intensive Care and Pain Management Sestre Milosrdnice University Hospital Center Zagreb Croatia. Department of Intensive Care Medicine Laboratory for Critical Care Computational Intelligence Amsterdam Medical Data Science Amsterdam Public Health Amsterdam Cardiovascular Science Amsterdam Institute for Infection and Immunity Amsterdam UMC University of Amsterdam Vrije Universiteit Amsterdam The Netherlands.
OBJECTIVE:To determine whether the ROX index and its variations can predict the risk of intubation in ICU patients receiving NIV ventilation using large public ICU databases.DESIGN:Retrospective observational cohort s... 详细信息
来源: 评论
Tensor BM-Decomposition for Compression and Analysis of Video data
arXiv
收藏 引用
arXiv 2023年
作者: Tian, Fan Kilmer, Misha E. Miller, Eric Patra, Abani Department of Mathematics Tufts University MedfordMA02115 United States Electrical and Computer Engineering Tufts University MedfordMA02115 United States Computer Science Department Tufts University MedfordMA02115 United States Data Intensive Studies Center Tufts University MedfordMA02115 United States Tufts Institute for Artificial Intelligence Tufts University MedfordMA02115 United States
Given tensors A, B, C of size m × 1 × n, m × p × 1, and 1 × p × n, respectively, their Bhattacharya-Mesner (BM) product will result in a third-order tensor of dimension m × p × ... 详细信息
来源: 评论
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论
Optimal multistage group testing algorithm for 3 defectives
arXiv
收藏 引用
arXiv 2020年
作者: Vorobyev, Ilya Center for Computational and Data-Intensive Science and Engineering Skolkovo Institute of Science and Technology Moscow127051 Russia Advanced Combinatorics and Complex Networks Lab Moscow Institute of Physics and Technology Dolgoprudny141701 Russia
Group testing is a well-known search problem that consists in detecting of s defective members of a set of t samples by carrying out tests on properly chosen subsets of samples. In classical group testing the goal is ... 详细信息
来源: 评论
Prediction of Diblock Copolymer Morphology via Machine Learning
arXiv
收藏 引用
arXiv 2023年
作者: Park, Hyun Yu, Boyuan Park, Juhae Sun, Ge Tajkhorshid, Emad de Pablo, Juan J. Schneider, Ludwig Theoretical and Computational Biophysics Group NIH Resource Center for Macromolecular Modeling and Bioinformatics Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Center for Biophysics and Quantitative Biology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Data Science and Learning Division Argonne National Laboratory LemontIL60439 United States Pritzker School of Molecular Engineering University of Chicago 5640 Ellis Ave ChicagoIL60637 United States Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Department of Biochemistry University of Illinois at Urbana-Champaign UrbanaIL61801 United States
A machine learning approach is presented to accelerate the computation of block polymer morphology evolution for large domains over long timescales. The strategy exploits the separation of characteristic times between... 详细信息
来源: 评论
Exploiting the Intrinsic Neighborhood Semantic Structure for Domain Adaptation in EEG-based Emotion Recognition
收藏 引用
IEEE Transactions on Affective Computing 2025年
作者: Yang, Yi Wang, Ze Song, Yu Jia, Ziyu Wang, Boyu Jung, Tzyy-Ping Wan, Feng Macau University of Science and Technology Macao Centre for Mathematical Sciences Respiratory Disease AI Laboratory on Epidemic Intelligence and Medical Big Data Instrument Applications Faculty of Innovation Engineering 999078 China Tianjin University of Technology School of Electrical Engineering and Automation Tianjin Key Laboratory of New Energy Power Conversion Transmission and Intelligent Control Tianjin300384 China Chinese Academy of Sciences Beijing Key Laboratory of Brainnetome and Brain-Computer Interface and Brainnetome Center Institute of Automation Beijing100045 China Western University Department of Computer Science Brain Mind Institute LondonONN6A 3K7 Canada University of California at San Diego Swartz Center for Computational Neuroscience Institute for Neural Computation La Jolla CA92093 United States University of Macau Department of Electrical and Computer Engineering Faculty of Science and Technology China University of Macau Centre for Cognitive and Brain Sciences Centre for Artificial Intelligence and Robotics Institute of Collaborative Innovation 999078 China
Due to the inherent non-stationarity and individual differences present in electroencephalogram (EEG) signals, developing a generalizable model that performs well on new subjects is challenging in EEG-based emotion re... 详细信息
来源: 评论
ABACUS: An Electronic Structure Analysis Package for the AI Era
arXiv
收藏 引用
arXiv 2025年
作者: Zhou, Weiqing Zheng, Daye Liu, Qianrui Lu, Denghui Liu, Yu Lin, Peize Huang, Yike Peng, Xingliang Bao, Jie J. Cai, Chun Jin, Zuxin Wu, Jing Zhang, Haochong Jin, Gan Ji, Yuyang Shen, Zhenxiong Liu, Xiaohui Sun, Liang Cao, Yu Sun, Menglin Liu, Jianchuan Chen, Tao Liu, Renxi Li, Yuanbo Han, Haozhi Liang, Xinyuan Bao, Taoni Chen, Nuo Ren, Hongxu Zhang, Xiaoyang Liu, Zhaoqing Fu, Yiwei Liu, Maochang Li, Zhuoyuan Wen, Tongqi Tang, Zechen Xu, Yong Duan, Wenhui Wang, Xiaoyang Gu, Qiangqiang Dai, Fu-Zhi Zheng, Qijing Zhao, Jin Zhang, Yuzhi Ou, Qi Jiang, Hong Liu, Shi Xu, Ben Xu, Shenzhen Ren, Xinguo He, Lixin Zhang, Linfeng Chen, Mohan AI for Science Institute Beijing100080 China HEDPS CAPT School of Physics College of Engineering Peking University Beijing100871 China College of Engineering Peking University Beijing100871 China Institute of Artificial Intelligence Hefei Comprehensive National Science Center Hefei230026 China Key Laboratory of Quantum Information University of Science and Technology of China Hefei230026 China Supercomputing Center University of Science and Technology of China Anhui Hefei230026 China Institute of Physics Chinese Academy of Sciences Beijing100190 China School of Materials Science and Engineering Peking University Beijing100871 China School of Electrical Engineering and Electronic Information Xihua University Chengdu610039 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China College of Chemistry and Molecular Engineering Peking University Beijing100871 China International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow Xi’an Jiaotong University Shaanxi Xi’an710049 China Suzhou Academy of Xi’an Jiaotong University Jiangsu Suzhou215123 China Center for Structural Materials Department of Mechanical Engineering The University of Hong Kong Hong Kong The University of Hong Kong Shenzhen China State Key Laboratory of Low Dimensional Quantum Physics Department of Physics Tsinghua University Beijing100084 China Frontier Science Center for Quantum Information Beijing China Saitama Wako351-0198 Japan Institute for Advanced Study Tsinghua University Beijing100084 China Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Fenghao East Road 2 Beijing100094 China School of Artificial Intelligence and Data Science University of Science and Technology of China Hefei230026 China School of Materials Science and Engineering University of Science and Technology Beijing Beijing100083 China Department of Physics University of Science and
ABACUS (Atomic-orbital Based Ab-initio Computation at USTC) is an open-source software for first-principles electronic structure calculations and molecular dynamics simulations. It mainly features density functional t... 详细信息
来源: 评论
PyMIC: A deep learning toolkit for annotation-efficient medical image segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Guotai Luo, Xiangde Gu, Ran Yang, Shuojue Qu, Yijie Zhai, Shuwei Zhao, Qianfei Li, Kang Zhang, Shaoting School of Mechanical and Electrical Engineering University of Electronic Science and Technology of China Chengdu China Shanghai Artificial Intelligence Laboratory Shanghai China Laboratory for Computational Sensing and Robotics Johns Hopkins University Baltimore United States West China Biomedical Big Data Center West China Hospital Sichuan University Chengdu China
Background and Objective: Open-source deep learning toolkits are one of the driving forces for developing medical image segmentation models. Existing toolkits mainly focus on fully supervised segmentation and require ... 详细信息
来源: 评论
A Mixing Time Lower Bound for a Simplified Version of BART
arXiv
收藏 引用
arXiv 2022年
作者: Ronen, Omer Saarinen, Theo Tan, Yan Shuo Duncan, James Yu, Bin Department of Statistics UC Berkeley United States Department of Electrical Engineering and Computer Sciences UC Berkeley United States Center for Computational Biology UC Berkeley United States Department of Statistics and Data Science National University of Singapore Singapore Microsoft Research United States Group in Biostatistics UC Berkeley United States
Bayesian Additive Regression Trees (BART) is a popular Bayesian non-parametric regression algorithm. The posterior is a distribution over sums of decision trees, and predictions are made by averaging approximate sampl... 详细信息
来源: 评论
Heterogeneous influence of individuals’ behavior on mask efficacy in gathering environments
收藏 引用
Frontiers of engineering Management 2022年 第4期9卷 550-562页
作者: Haochen SUN Xiaofan LIU Zhanwei DU Ye WU Haifeng ZHANG Xiaoke XU College of Information and Communication Engineering Dalian Minzu UniversityDalian 116600China Web Mining Laboratory Department of Media and CommunicationCity University of Hong KongHong KongChina WHO Collaborating Centre for Infectious Disease Epidemiology and Control School of Public HealthLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina Laboratory of Data Discovery for Health Hong Kong Science and Technology ParkHong KongChina Computational Communication Research Center Beijing Normal University(Zhuhai)Zhuhai 519087China School of Journalism and Communication Beijing Normal UniversityBeijing 100875China Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Mathematical ScienceAnhui UniversityHefei 230601China
Wearing masks is an easy way to operate and popular measure for preventing *** masks can slow down the spread of viruses,their efficacy in gathering environments involving heterogeneous person-to-person contacts remai... 详细信息
来源: 评论