咨询与建议

限定检索结果

文献类型

  • 561 篇 期刊文献
  • 161 篇 会议

馆藏范围

  • 722 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 426 篇 工学
    • 218 篇 计算机科学与技术...
    • 181 篇 软件工程
    • 73 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 65 篇 电子科学与技术(可...
    • 64 篇 电气工程
    • 56 篇 光学工程
    • 49 篇 信息与通信工程
    • 49 篇 化学工程与技术
    • 44 篇 控制科学与工程
    • 34 篇 仪器科学与技术
    • 27 篇 材料科学与工程(可...
    • 20 篇 动力工程及工程热...
    • 18 篇 力学(可授工学、理...
    • 18 篇 冶金工程
  • 412 篇 理学
    • 151 篇 物理学
    • 144 篇 数学
    • 101 篇 生物学
    • 67 篇 地球物理学
    • 62 篇 统计学(可授理学、...
    • 56 篇 化学
    • 20 篇 系统科学
  • 94 篇 医学
    • 67 篇 临床医学
    • 60 篇 基础医学(可授医学...
    • 39 篇 公共卫生与预防医...
    • 31 篇 药学(可授医学、理...
  • 81 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 31 篇 图书情报与档案管...
    • 19 篇 工商管理
  • 26 篇 农学
  • 18 篇 法学
    • 16 篇 社会学
  • 7 篇 经济学
  • 4 篇 教育学
  • 2 篇 文学

主题

  • 21 篇 machine learning
  • 12 篇 deep learning
  • 8 篇 galaxies
  • 7 篇 stars
  • 7 篇 accuracy
  • 7 篇 training
  • 6 篇 feature extracti...
  • 5 篇 covid-19
  • 5 篇 surveys
  • 5 篇 generative adver...
  • 5 篇 supernovae
  • 5 篇 tensors
  • 5 篇 predictive model...
  • 5 篇 visualization
  • 5 篇 molecular dynami...
  • 4 篇 planets
  • 4 篇 integral equatio...
  • 4 篇 photometry
  • 4 篇 x-ray generation...
  • 4 篇 image segmentati...

机构

  • 34 篇 center for compu...
  • 31 篇 center for data ...
  • 21 篇 space telescope ...
  • 15 篇 nasa ames resear...
  • 10 篇 department of ph...
  • 9 篇 center for astro...
  • 8 篇 department of ea...
  • 8 篇 department of as...
  • 8 篇 institute for gr...
  • 8 篇 department of as...
  • 7 篇 kotizarovci obse...
  • 7 篇 university of gl...
  • 7 篇 millennium insti...
  • 7 篇 university of ch...
  • 7 篇 department of ph...
  • 7 篇 computational en...
  • 6 篇 university of ta...
  • 6 篇 royal stoke univ...
  • 6 篇 department of bi...
  • 6 篇 leiden observato...

作者

  • 14 篇 strader jay
  • 12 篇 rodriguez joseph...
  • 11 篇 sand david j.
  • 10 篇 jenkins jon m.
  • 10 篇 latham david w.
  • 10 篇 quinn samuel n.
  • 9 篇 shporer avi
  • 9 篇 winn joshua n.
  • 8 篇 ciardi david r.
  • 8 篇 howell steve b.
  • 7 篇 stassun keivan g...
  • 7 篇 masuda naoki
  • 7 篇 zhang linfeng
  • 7 篇 seager s.
  • 7 篇 vorobyev ilya
  • 7 篇 spekkens kristin...
  • 7 篇 bieryla allyson
  • 7 篇 hongo kenta
  • 7 篇 collins karen a.
  • 7 篇 crnojević denija

语言

  • 638 篇 英文
  • 77 篇 其他
  • 7 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 俄文
检索条件"机构=Center for Computational Data-Intensive Science and Engineering"
722 条 记 录,以下是351-360 订阅
排序:
MOST DISCRIMINATIVE STIMULI FOR FUNCTIONAL CELL TYPE CLUSTERING
arXiv
收藏 引用
arXiv 2023年
作者: Burg, Max F. Zenkel, Thomas Vystrčilová, Michaela Oesterle, Jonathan Höfling, Larissa Willeke, Konstantin F. Lause, Jan Müller, Sarah Fahey, Paul G. Ding, Zhiwei Restivo, Kelli Sridhar, Shashwat Gollisch, Tim Berens, Philipp Tolias, Andreas S. Euler, Thomas Bethge, Matthias Ecker, Alexander S. International Max Planck Research School for Intelligent Systems Tübingen Germany Institute of Computer Science University of Göttingen Campus Institute Data Science Germany Tübingen AI Center University of Tübingen Germany Institute of Ophthalmic Research University of Tübingen Germany Centre for Integrative Neuroscience University of Tübingen Germany Institute for Bioinformatics and Medical Informatics Tübingen University Germany Hertie Institute for AI in Brain Health University of Tübingen Germany Department of Neuroscience Baylor College of Medicine HoustonTX United States Center for Neuroscience and Artificial Intelligence Baylor College of Medicine HoustonTX United States University Medical Center Göttingen Department of Ophthalmology Germany Bernstein Center for Computational Neuroscience Göttingen Germany University of Göttingen Germany Department of Electrical and Computer Engineering Rice University HoustonTX United States Max Planck Institute for Dynamics and Self-Organization Göttingen Germany
Identifying cell types and understanding their functional properties is crucial for unraveling the mechanisms underlying perception and cognition. In the retina, functional types can be identified by carefully selecte... 详细信息
来源: 评论
A practical guide to machine learning interatomic potentials – Status and future
arXiv
收藏 引用
arXiv 2025年
作者: Jacobs, Ryan Morgan, Dane Attarian, Siamak Meng, Jun Shen, Chen Wu, Zhenghao Xie, Clare Yijia Yang, Julia H. Artrith, Nongnuch Blaiszik, Ben Ceder, Gerbrand Choudhary, Kamal Csanyi, Gabor Cubuk, Ekin Dogus Deng, Bowen Drautz, Ralf Fu, Xiang Godwin, Jonathan Honavar, Vasant Isayev, Olexandr Johansson, Anders Kozinsky, Boris Martiniani, Stefano Ong, Shyue Ping Poltavsky, Igor Schmidt, K.J. Takamoto, So Thompson, Aidan Westermayr, Julia Wood, Brandon M. Department of Materials Science and Engineering University of Wisconsin-Madison MadisonWI55705 United States Harvard University Center for the Environment Harvard University CambridgeMA02138 United States John A. Paulson School of Engineering and Applied Sciences Harvard University CambridgeMA02138 United States Materials Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Utrecht3584 CG Netherlands Globus University of Chicago ChicagoIL United States Data Science and Learning Division Argonne National Laboratory LemontIL United States Department of Materials Science and Engineering University of California BerkeleyCA94720 United States Materials Sciences Division Lawrence Berkeley National Laboratory CA94720 United States Material Measurement Laboratory National Institute of Standards and Technology GaithersburgMD20899 United States Department of Engineering University of Cambridge CambridgeCB2 1PZ United Kingdom Google DeepMind Mountain ViewCA United States Ruhr-Universität Bochum Bochum44780 Germany Meta United States Orbital Materials London United Kingdom Department of Computer Science and Engineering The Pennsylvania State University University ParkPA United States College of Information Sciences and Technology The Pennsylvania State University University ParkPA United States Artificial Intelligence Research Laboratory The Pennsylvania State University University ParkPA United States Center for Artificial Intelligence Foundations and Scientific Applications The Pennsylvania State University University ParkPA United States Department of Chemistry Mellon College of Science Carnegie Mellon University PittsburghPA15213 United States Computational Biology Department School of Computer Science Carnegie Mellon University PittsburghPA15213 United States Courant Institute of Mathematical Sciences New York University New YorkNY10003 United States Center for Soft Matter Research Department of P
The rapid development and large body of literature on machine learning interatomic potentials (MLIPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The s... 详细信息
来源: 评论
Improving Policy-Oriented Agent-Based Modeling with History Matching: A Case Study
arXiv
收藏 引用
arXiv 2024年
作者: O’Gara, David Kerr, Cliff C. Klein, Daniel J. Binois, Mickaël Garnett, Roman Hammond, Ross A. Division of Computational and Data Sciences Washington University in St. Louis St. LouisMO United States Institute for Disease Modeling Bill & Melinda Gates Foundation SeattleWA United States Acumes Team Université Côte d’Azur Inria Sophia Antipolis France Department of Computer Science McKelvey School of Engineering Washington University in St. Louis St. LouisMO United States Public Health Brown School Washington University in St. Louis St. LouisMO United States Center on Social Dynamics and Policy Brookings Institution WashingtonDC United States The Santa Fe Institute Santa FeNM United States
Advances in computing power and data availability have led to growing sophistication in mechanistic mathematical models of social dynamics. Increasingly these models are used to inform real-world policy decision-makin... 详细信息
来源: 评论
Model Predictive Path Integral Control for Car Driving with Autogenerated Cost map Based on Prior Map and Camera Image
Model Predictive Path Integral Control for Car Driving with ...
收藏 引用
International Conference on Intelligent Transportation
作者: Alexander Buyval Aidar Gabdullin Konstantin Sozykin Alexandr Klimchik Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Skolkovo Institute of Science and Technology (Skoltech) Center for Computational and Data-Intensive Science and Engineering (CDISE) Russia
Model Predictive Path Integral (MPPI) algorithm is an efficient approach to control an autonomous car. However, it requires a cost map. Preparing a cost map in advance is a task that can be completed only for a static... 详细信息
来源: 评论
Parallel Planning:A New Motion Planning Framework for Autonomous Driving
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2019年 第1期6卷 236-246页
作者: Long Chen Xuemin Hu Wei Tian Hong Wang Dongpu Cao Fei-Yue Wang IEEE School of Data and Computer Science Sun Yat-sen University the School of Computer Science and Information Engineering Hubei University Institute of Measurement and Control Systems Karlsruhe Institute of Technology Department of Mechanical and Mechatronics Engineering University of Waterloo the State Key Laboratory of Management and Control for Complex Systems.Institute of Automation Chinese Academy of Sciences the Research Center for Military Computational Experiments and Parallel Systems Technology National University of Defense Technology
Motion planning is one of the most significant technologies for autonomous driving. To make motion planning models able to learn from the environment and to deal with emergency situations, a new motion planning framew... 详细信息
来源: 评论
Stability of stochastic gradient descent on nonsmooth convex losses  20
Stability of stochastic gradient descent on nonsmooth convex...
收藏 引用
Proceedings of the 34th International Conference on Neural Information Processing Systems
作者: Raef Bassily Vitaly Feldman Cristóbal Guzmán Kunal Talwar Department of Computer Science & Engineering The Ohio State University Apple Pontificia Universidad Católica de Chile Institute for Mathematical and Computational Engineering ANID – Millennium Science Initiative Program Millennium Nucleus Center for the Discovery of Structures in Complex Data
Uniform stability is a notion of algorithmic stability that bounds the worst case change in the model output by the algorithm when a single data point in the dataset is replaced. An influential work of Hardt et al. [2...
来源: 评论
AA-ICP: Iterative closest point with anderson acceleration
AA-ICP: Iterative closest point with anderson acceleration
收藏 引用
2018 IEEE International Conference on Robotics and Automation, ICRA 2018
作者: Pavlov, Artem L. Ovchinnikov, Grigory W.V. Derbyshev, Dmitry Yu. Tsetserukou, Dzmitry Oseledets, Ivan V. Skolkovo Institute of Science and Technology Skolkovo Innovation Center Space Center Moscow143026 Russia Skolkovo Institute of Science and Technology Computational and Data-Intensive Science and Engineering Russia Moscow Institute of Physics and Technology Russia Skolkovo Institute of Science and Technology Space Center Russia Skolkovo Institute of Science and Technology Center for Computational and Data-Intensive Science and Engineering Russia
Iterative Closest Point (ICP) is a widely used method for performing scan-matching and registration. Being simple and robust, this method is still computationally expensive and may be challenging to use in real-time a... 详细信息
来源: 评论
Teaching mechanics with individual exercise assignments and automated correction
收藏 引用
PAMM 2023年 第3期23卷
作者: Michael H. Gfrerer Benjamin Marussig Katharina Maitz Mia M. Bangerl Institute of Applied Mechanics Graz Center of Computational Engineering (GCCE) Graz University of Technology Graz Austria Private University College of Teacher Education Augustinum (PPH Augustinum) Graz Austria Institute of Interactive Systems and Data Science Graz University of Technology Graz Austria
Solving exercise problems by yourself is a vital part of developing a mechanical understanding. Yet, most mechanics lectures have more than 200 participants, so the workload for manually creating and correcting assign...
来源: 评论
Comparison of immune profiles between hepatocellular carcinoma subtypes
收藏 引用
Biophysics Reports 2020年 第1期6卷 19-32页
作者: Xuemin Pan Ping Lin Fangyoumin Feng Jia Li Yuan-Yuan Li Wentao Dai Bo Hu Xin-Rong Yang Jia Fan Hong Li Yixue Li School of Life Sciences and Biotechnology Shanghai Jiao Tong University Bio-Med Big Data Center Key Laboratory of Computational Biology CAS-MPG Partner Institute for Computational Biology Shanghai Institute of Nutrition and Health Shanghai Institutes for Biological Sciences University of Chinese Academy of Sciences Chinese Academy of Sciences University of the Chinese Academy of Sciences School of Life Science and Techonology Shanghai Tech University Shanghai Center for Bioinformation Technology Shanghai Academy of Science & Technology Shanghai Engineering Research Center of Pharmaceutical Translation Department of Liver Surgery Liver Cancer Institute Zhongshan Hospital Fudan University Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Collaborative Innovation Center of Genetics and Development Fudan University
Immunotherapy, especially immune checkpoint inhibitors, is becoming a promising treatment for hepatocellular carcinoma(HCC). However, the response rate remains limited due to the heterogeneity of HCC samples. Molecula... 详细信息
来源: 评论
Batch reverse osmosis:a new research direction in water desalination
收藏 引用
science Bulletin 2020年 第20期65卷 1705-1708页
作者: Mingheng Li Yi Heng Jiu Luo Department of Chemical and Materials Engineering California State Polytechnic UniversityPomonaCA 91768USA School of Data and Computer Science Sun Yat-sen UniversityGuangzhou 510006China Guangdong Province Key Laboratory of Computational Science Guangzhou 510006China National Supercomputing Center in Guangzhou(NSCC-GZ) Guangzhou 510006China School of Materials Science and Engineering Sun Yat-sen UniversityGuangzhou 510275China
Water scarcity is one of the grand challenges across the world[1].Spiral wound reverse osmosis(RO)desalination is the most popular industrial technology to produce portable water from saline water *** terms of flow pa... 详细信息
来源: 评论