咨询与建议

限定检索结果

文献类型

  • 561 篇 期刊文献
  • 161 篇 会议

馆藏范围

  • 722 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 426 篇 工学
    • 218 篇 计算机科学与技术...
    • 181 篇 软件工程
    • 73 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 65 篇 电子科学与技术(可...
    • 64 篇 电气工程
    • 56 篇 光学工程
    • 49 篇 信息与通信工程
    • 49 篇 化学工程与技术
    • 44 篇 控制科学与工程
    • 34 篇 仪器科学与技术
    • 27 篇 材料科学与工程(可...
    • 20 篇 动力工程及工程热...
    • 18 篇 力学(可授工学、理...
    • 18 篇 冶金工程
  • 412 篇 理学
    • 151 篇 物理学
    • 144 篇 数学
    • 101 篇 生物学
    • 67 篇 地球物理学
    • 62 篇 统计学(可授理学、...
    • 56 篇 化学
    • 20 篇 系统科学
  • 94 篇 医学
    • 67 篇 临床医学
    • 60 篇 基础医学(可授医学...
    • 39 篇 公共卫生与预防医...
    • 31 篇 药学(可授医学、理...
  • 81 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 31 篇 图书情报与档案管...
    • 19 篇 工商管理
  • 26 篇 农学
  • 18 篇 法学
    • 16 篇 社会学
  • 7 篇 经济学
  • 4 篇 教育学
  • 2 篇 文学

主题

  • 21 篇 machine learning
  • 12 篇 deep learning
  • 8 篇 galaxies
  • 7 篇 stars
  • 7 篇 accuracy
  • 7 篇 training
  • 6 篇 feature extracti...
  • 5 篇 covid-19
  • 5 篇 surveys
  • 5 篇 generative adver...
  • 5 篇 supernovae
  • 5 篇 tensors
  • 5 篇 predictive model...
  • 5 篇 visualization
  • 5 篇 molecular dynami...
  • 4 篇 planets
  • 4 篇 integral equatio...
  • 4 篇 photometry
  • 4 篇 x-ray generation...
  • 4 篇 image segmentati...

机构

  • 34 篇 center for compu...
  • 31 篇 center for data ...
  • 21 篇 space telescope ...
  • 15 篇 nasa ames resear...
  • 10 篇 department of ph...
  • 9 篇 center for astro...
  • 8 篇 department of ea...
  • 8 篇 department of as...
  • 8 篇 institute for gr...
  • 8 篇 department of as...
  • 7 篇 kotizarovci obse...
  • 7 篇 university of gl...
  • 7 篇 millennium insti...
  • 7 篇 university of ch...
  • 7 篇 department of ph...
  • 7 篇 computational en...
  • 6 篇 university of ta...
  • 6 篇 royal stoke univ...
  • 6 篇 department of bi...
  • 6 篇 leiden observato...

作者

  • 14 篇 strader jay
  • 12 篇 rodriguez joseph...
  • 11 篇 sand david j.
  • 10 篇 jenkins jon m.
  • 10 篇 latham david w.
  • 10 篇 quinn samuel n.
  • 9 篇 shporer avi
  • 9 篇 winn joshua n.
  • 8 篇 ciardi david r.
  • 8 篇 howell steve b.
  • 7 篇 stassun keivan g...
  • 7 篇 masuda naoki
  • 7 篇 zhang linfeng
  • 7 篇 seager s.
  • 7 篇 vorobyev ilya
  • 7 篇 spekkens kristin...
  • 7 篇 bieryla allyson
  • 7 篇 hongo kenta
  • 7 篇 collins karen a.
  • 7 篇 crnojević denija

语言

  • 638 篇 英文
  • 77 篇 其他
  • 7 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 俄文
检索条件"机构=Center for Computational and Data-Intensive Science and Engineering"
722 条 记 录,以下是411-420 订阅
排序:
Antisymmetry rules of response properties in certain chemical spaces
arXiv
收藏 引用
arXiv 2025年
作者: Shiraogawa, Takafumi Krug, Simon León Ehara, Masahiro von Lilienfeld, O. Anatole Institute for Molecular Science National Institutes of Natural Sciences 38 Nishigonaka Myodaiji Okazaki444-8585 Japan Research Center for Computational Science National Institutes of Natural Sciences 38 Nishigonaka Myodaiji Okazaki444-8585 Japan The Graduate University for Advanced Studies 38 Nishigonaka Myodaiji Okazaki444-8585 Japan Machine Learning Group Technische Universität Berlin Berlin10587 Germany Chemical Physics Theory Group Department of Chemistry University of Toronto St. George Campus TorontoM5S3H6 Ontario Canada Department of Materials Science and Engineering University of Toronto St. George Campus TorontoM5S 3E4 Ontario Canada Vector Institute for Artificial Intelligence TorontoM5S 1M1 Ontario Canada Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Department of Physics University of Toronto St. George Campus TorontoM5S 1A7 Ontario Canada Acceleration Consortium University of Toronto TorontoM5R 0A3 Ontario Canada
Understanding chemical compound space (CCS), a set of molecules and materials, is crucial for the rational discovery of molecules and materials. Concepts of symmetry have recently been introduced into CCS to account f... 详细信息
来源: 评论
Scaling up the lattice dynamics of amorphous materials by orders of magnitude
收藏 引用
Physical Review B 2020年 第2期102卷 024108-024108页
作者: Ivan Kriuchevskyi Vladimir V. Palyulin Rico Milkus Robert M. Elder Timothy W. Sirk Alessio Zaccone Department of Physics “A. Pontremoli” University of Milan via Celoria 16 20133 Milan Italy Centre for Computational and Data-Intensive Science and Engineering Skolkovo Institute of Science and Technology Nobelya Ulitsa 3 Moscow 121205 Russia Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge CB3 0AS United Kingdom Polymers Branch U.S. Army Research Laboratory Aberdeen Proving Ground Maryland 20783 USA Bennett Aerospace Inc. Cary North Carolina 27518 USA Center for Devices and Radiological Health U.S. Food and Drug Administration Silver Spring Maryland 20903 USA
We generalize the nonaffine theory of viscoelasticity for use with large, well-sampled systems of arbitrary chemical complexity. Having in mind predictions of mechanical and vibrational properties of amorphous systems... 详细信息
来源: 评论
Multivariate Analysis on Performance Gaps of Artificial Intelligence Models in Screening Mammography
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Linglin Brown-Mulry, Beatrice Nalla, Vineela Hwang, InChan Gichoya, Judy Wawira Gastounioti, Aimilia Banerjee, Imon Seyyed-Kalantari, Laleh Woo, MinJae Trivedi, Hari School of Data Science and Analytics Kennesaw State University 3391 Town Point Dr NW KennesawGA30144 United States Department of Information Technology Kennesaw State University 1100 South Marietta Pkwy MariettaGA30060 United States Department of Radiology and Imaging Sciences Emory University 1364 E Clifton Rd NE AtlantaGA30322 United States Computational Imaging Research Center Washington University in St. Louis School of Medicine 4525 Scott Avenue St. LouisMO63110 United States Department of Radiology Mayo Clinic Arizona 13400 E Shea Blvd ScottsdaleAZ85259 United States School of Computing and Augmented Intelligence Arizona State University 699 S Mill Ave TempeAZ85281 United States Department of Electrical Engineering and Computer Science York University 4700 Keele St TorontoONM3J 1P3 Canada
Although deep learning models for abnormality classification can perform well in screening mammography, the demographic, imaging, and clinical characteristics associated with increased risk of model failure remain unc... 详细信息
来源: 评论
HPV-CCDC106 integration alters local chromosome architecture and hijacks an enhancer by three-dimensional genome structure remodeling in cervical cancer
收藏 引用
Journal of Genetics and Genomics 2020年 第8期47卷 435-448页
作者: Canhui Cao Ping Hong Xingyu Huang Da Lin Gang Cao Liming Wang Bei Feng Ping Wu Hui Shen Qian Xu Ci Ren Yifan Meng Wenhua Zhi Ruidi Yu Juncheng Wei Wencheng Ding Xun Tian Qinghua Zhang Wei Li Qinglei Gao Gang Chen Kezhen Li Wing-Kin Sung Zheng Hu Hui Wang Guoliang Li Peng Wu Department of Gynecologic Oncology Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China Cancer Biology Research Center(Key Laboratory of the Ministry of Education) Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China National Key Laboratory of Crop Genetic Improvement Huazhong Agricultural UniversityWuhan430070China Agricultural Bioinformatics Key Laboratory of Hubei Province Hubei Engineering Technology Research Center of Agricultural Big DataCollege of InformaticsHuazhong Agricultural UniversityWuhan430070China State Key Laboratory of Agricultural Microbiology Huazhong Agricultural UniversityWuhan430070China Bio-Medical Center Huazhong Agricultural UniversityWuhan430070China College of Veterinary Medicine Huazhong Agricultural UniversityWuhan430070China Department of Obstetrics and Gynecology Union HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China Department of Obstetrics and Gynecology Key Laboratory for Molecular Diagnosis of Hubei ProvinceThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430010China Department of Computational and Systems Biology Genome Institute of SingaporeSingapore Department of Gynecological Oncology The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou510080China
Integration of human papillomavirus(HPV)DNA into the human genome is a reputed key driver of cervical ***,the effects of HPV integration on chromatin structural organization and gene expression are largely *** studied... 详细信息
来源: 评论
Prediction of Oral Food Challenge Outcomes via Ensemble Learning
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Justin Lee, Deborah Jungles, Kylie Shaltis, Diane Najarian, Kayvan Ravikumar, Rajan Sanders, Georgiana Gryak, Jonathan Department of Electrical and Computer Engineering University of Michigan Ann ArborMI United States Department of Internal Medicine University of Michigan Ann ArborMI United States Department of Pediatrics University of Michigan Ann ArborMI United States Department of Computational Medicine and Bioinformatics University of Michigan Ann ArborMI United States Michigan Institute for Data Science University of Michigan Ann ArborMI United States Department of Emergency Medicine University of Michigan Ann ArborMI United States Department of Computer Science and Engineering University of Michigan Ann ArborMI United States Max Harry Weil Institute for Critical Care Research and Innovation University of Michigan Ann ArborMI United States Mary H. Weiser Food Allergy Center University of Michigan Ann ArborMI United States Department of Computer Science Queens College City University of New York New YorkNY United States
Oral Food Challenges (OFCs) are essential to accurately diagnosing food allergy due to the limitations of existing clinical testing. However, some patients are hesitant to undergo OFCs, while those willing suffer from... 详细信息
来源: 评论
Optimizing Laser Pulses for Narrow-Band Inverse Compton Sources in the High-Intensity Regime
收藏 引用
Physical Review Letters 2019年 第20期122卷 204802-204802页
作者: Daniel Seipt Vasily Yu. Kharin Sergey G. Rykovanov Helmholtz-Institut Jena Fröbelstieg 3 07743 Jena Germany Center for Ultrafast Optical Science University of Michigan Ann Arbor Michigan 48109 USA Research Institute Moscow R&D Lab Moscow Bersenevskaya nab. 6 119072 Russia Center for Computational and Data-Intensive Science and Engineering Skolkovo Institute of Science and Technology Nobel Str. 3 Skolkovo Russia
Scattering of ultraintense short laser pulses off relativistic electrons allows one to generate a large number of X- or gamma-ray photons with the expense of the spectral width—temporal pulsing of the laser inevitabl... 详细信息
来源: 评论
Optimizing Laser Pulses for Narrowband Inverse Compton Sources in the High-Intensity Regime
arXiv
收藏 引用
arXiv 2019年
作者: Seipt, Daniel Yu. Kharin, Vasily Rykovanov, Sergey G. Helmholtz-Institut Jena Fröbelstieg 3 Jena07743 Germany Center for Ultrafast Optical Science University of Michigan Ann Arbor MI48109 United States Center for Computational and Data-Intensive Science and Engineering Skolkovo Institute of Science and Technology Nobel Str. 3 Skolkovo Russia
Scattering of ultraintense short laser pulses off relativistic electrons allows one to generate a large number of X- or gamma-ray photons with the expense of the spectral width—temporal pulsing of the laser inevitabl... 详细信息
来源: 评论
Concept transfer of synaptic diversity from biological to artificial neural networks
收藏 引用
Nature communications 2025年 第1期16卷 5112页
作者: Martin Hofmann Moritz Franz Peter Becker Christian Tetzlaff Patrick Mäder Data-intensive Systems and Visualization Group (dAI.SY) Technische Universität Ilmenau Max-Planck-Ring 14 Ilmenau 98693 Thuringia Germany. martin.hofmann@tu-ilmenau.de. Group of Computational Synaptic Physiology Department for Neuro- and Sensory Physiology University Medical Center Göttingen Humboldtallee 23 Göttingen 37073 Lower Saxony Germany. Campus-Institut Data Science (CIDAS) University of Göttingen Goldschmidtstraße 1 Göttingen 37077 Lower Saxony Germany. Data-intensive Systems and Visualization Group (dAI.SY) Technische Universität Ilmenau Max-Planck-Ring 14 Ilmenau 98693 Thuringia Germany. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Deutscher Platz 5e Leipzig 04103 Saxony Germany. Faculty of Biological Sciences Friedrich Schiller University Fürstengraben 1 Jena 07745 Thuringia Germany.
Recent developments in artificial neural networks have drawn inspiration from biological neural networks, leveraging the concept of the artificial neuron to model the learning abilities of biological nerve cells. Howe...
来源: 评论
OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
arXiv
收藏 引用
arXiv 2023年
作者: Eastman, Peter Galvelis, Raimondas Peláez, Raúl P. Abreu, Charlles R.A. Farr, Stephen E. Gallicchio, Emilio Gorenko, Anton Henry, Michael M. Hu, Frank Huang, Jing Krämer, Andreas Michel, Julien Mitchell, Joshua A. Pande, Vijay S. Rodrigues, João P.G.L.M. Rodriguez-Guerra, Jaime Simmonett, Andrew C. Singh, Sukrit Swails, Jason Turner, Philip Wang, Yuanqing Zhang, Ivy Chodera, John D. De Fabritiis, Gianni Markland, Thomas E. Department of Chemistry Stanford University StanfordCA94305 United States Acellera Labs C Dr Trueta 183 Barcelona08005 Spain C Dr. Aiguader 88 Barcelona08003 Spain Chemical Engineering Department School of Chemistry Federal University of Rio de Janeiro Rio de Janeiro68542 Brazil Redesign Science Inc. 180 Varick St. New YorkNY10014 United States EaStCHEM School of Chemistry University of Edinburgh EH9 3FJ United Kingdom Department of Chemistry and Biochemistry Brooklyn College The City University of New York NY United States Ph.D. Program in Chemistry Ph.D. Program in Biochemistry The Graduate Center of the City University of New York New YorkNY United States Stream HPC Koningin Wilhelminaplein 1 - 40601 Amsterdam1062 HG Netherlands Computational and Systems Biology Program Sloan Kettering Institute Memorial Sloan Kettering Cancer Center New YorkNY10065 United States Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University 18 Shilongshan Road Zhejiang Hangzhou310024 China Department of Mathematics and Computer Science Freie Universität Berlin Arnimallee 12 Berlin14195 Germany The Open Force Field Initiative Open Molecular Software Foundation DavisCA95616 United States Andreessen Horowitz 2865 Sand Hill Rd Menlo ParkCA94025 United States Department of Structural Biology Stanford University StanfordCA94305 United States Charité Universitätsmedizin Berlin In silico Toxicology and Structural Bioinformatics Virchowweg 6 Berlin10117 Germany Laboratory of Computational Biology National Heart Lung and Blood Institute National Institutes of Health BethesdaMD20892 United States Entos Inc. 9310 Athena Circle La Jolla CA92037 United States College of Engineering Virginia Polytechnic Institute State University BlacksburgVA24061 United States Simons Center for Computational Physical Chemistry Center for Data Science New York University 24 Waverly Place New YorkNY10004 United States T
Machine learning plays an important and growing role in molecular simulation. The newest version of the OpenMM molecular dynamics toolkit introduces new features to support the use of machine learning potentials. Arbi... 详细信息
来源: 评论
USID and Pycroscopy - Open frameworks for storing and analyzing spectroscopic and imaging data
arXiv
收藏 引用
arXiv 2019年
作者: Somnath, Suhas Smith, Chris R. Laanait, Nouamane Vasudevan, Rama K. Ievlev, Anton Belianinov, Alex Lupini, Andrew R. Shankar, Mallikarjun Kalinin, Sergei V. Jesse, Stephen Advanced Data and Workflows Group National Center for Computational Sciences Center for Nanophase Materials Sciences Computational Chemical and Materials Sciences Computational Science and Engineering Division Oak Ridge National Laboratory Oak RidgeTN37831 United States
Materials science is undergoing profound changes due to advances in characterization instrumentation that have resulted in an explosion of data in terms of volume, velocity, variety and complexity. Harnessing these da... 详细信息
来源: 评论