咨询与建议

限定检索结果

文献类型

  • 554 篇 期刊文献
  • 157 篇 会议

馆藏范围

  • 711 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 413 篇 工学
    • 212 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 72 篇 生物医学工程(可授...
    • 67 篇 生物工程
    • 65 篇 电子科学与技术(可...
    • 63 篇 电气工程
    • 55 篇 光学工程
    • 49 篇 化学工程与技术
    • 48 篇 信息与通信工程
    • 40 篇 控制科学与工程
    • 33 篇 仪器科学与技术
    • 24 篇 材料科学与工程(可...
    • 20 篇 动力工程及工程热...
    • 18 篇 力学(可授工学、理...
    • 18 篇 冶金工程
  • 403 篇 理学
    • 149 篇 物理学
    • 142 篇 数学
    • 97 篇 生物学
    • 66 篇 地球物理学
    • 60 篇 统计学(可授理学、...
    • 53 篇 化学
    • 20 篇 系统科学
  • 93 篇 医学
    • 66 篇 临床医学
    • 59 篇 基础医学(可授医学...
    • 39 篇 公共卫生与预防医...
    • 31 篇 药学(可授医学、理...
  • 80 篇 管理学
    • 42 篇 管理科学与工程(可...
    • 31 篇 图书情报与档案管...
    • 18 篇 工商管理
  • 25 篇 农学
  • 18 篇 法学
    • 16 篇 社会学
  • 6 篇 经济学
  • 4 篇 教育学
  • 2 篇 文学

主题

  • 21 篇 machine learning
  • 12 篇 deep learning
  • 8 篇 galaxies
  • 7 篇 stars
  • 7 篇 accuracy
  • 7 篇 training
  • 6 篇 feature extracti...
  • 5 篇 covid-19
  • 5 篇 surveys
  • 5 篇 generative adver...
  • 5 篇 supernovae
  • 5 篇 tensors
  • 5 篇 predictive model...
  • 5 篇 visualization
  • 5 篇 molecular dynami...
  • 4 篇 planets
  • 4 篇 integral equatio...
  • 4 篇 photometry
  • 4 篇 x-ray generation...
  • 4 篇 signal processin...

机构

  • 34 篇 center for compu...
  • 31 篇 center for data ...
  • 21 篇 space telescope ...
  • 15 篇 nasa ames resear...
  • 10 篇 department of ph...
  • 9 篇 center for astro...
  • 8 篇 department of ea...
  • 8 篇 department of as...
  • 8 篇 institute for gr...
  • 8 篇 department of as...
  • 7 篇 kotizarovci obse...
  • 7 篇 university of gl...
  • 7 篇 millennium insti...
  • 7 篇 university of ch...
  • 7 篇 department of ph...
  • 7 篇 computational en...
  • 6 篇 university of ta...
  • 6 篇 royal stoke univ...
  • 6 篇 department of bi...
  • 6 篇 leiden observato...

作者

  • 14 篇 strader jay
  • 12 篇 rodriguez joseph...
  • 11 篇 sand david j.
  • 10 篇 jenkins jon m.
  • 10 篇 latham david w.
  • 10 篇 quinn samuel n.
  • 9 篇 shporer avi
  • 9 篇 winn joshua n.
  • 8 篇 ciardi david r.
  • 8 篇 howell steve b.
  • 7 篇 stassun keivan g...
  • 7 篇 masuda naoki
  • 7 篇 zhang linfeng
  • 7 篇 seager s.
  • 7 篇 vorobyev ilya
  • 7 篇 spekkens kristin...
  • 7 篇 bieryla allyson
  • 7 篇 hongo kenta
  • 7 篇 collins karen a.
  • 7 篇 crnojević denija

语言

  • 649 篇 英文
  • 55 篇 其他
  • 6 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Center for Computational and Data-intensive Science and Engineering"
711 条 记 录,以下是341-350 订阅
排序:
Author Correction: Employing fingerprinting of medicinal plants by means of LC-MS and machine learning for species identification task
收藏 引用
Scientific reports 2020年 第1期10卷 11482页
作者: Pavel Kharyuk Dmitry Nazarenko Ivan Oseledets Igor Rodin Oleg Shpigun Andrey Tsitsilin Mikhail Lavrentyev Skolkovo Institute of Science and Technology Center for Computational and Data-Intensive Science and Engineering Moscow 143026 Russia. kharyuk.pavel@***. Institute of Numerical Mathematics of the Russian Academy of Sciences Moscow 119991 Russia. kharyuk.pavel@***. Lomonosov Moscow State University Faculty of Chemistry Moscow 119991 Russia. dmitro.nazarenko@***. Skolkovo Institute of Science and Technology Center for Computational and Data-Intensive Science and Engineering Moscow 143026 Russia. Institute of Numerical Mathematics of the Russian Academy of Sciences Moscow 119991 Russia. Lomonosov Moscow State University Faculty of Chemistry Moscow 119991 Russia. All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR) Moscow 117216 Russia. Saratov State University Department of Botanics and Ecology Saratov 410012 Russia.
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
来源: 评论
Heavy metals prediction in coastal marine sediments using hybridized machine learning models with metaheuristic optimization algorithm
收藏 引用
Chemosphere 2024年 352卷 141329页
作者: Yaseen, Zaher Mundher Melini Wan Mohtar, Wan Hanna Homod, Raad Z. Alawi, Omer A. Abba, Sani I. Oudah, Atheer Y. Togun, Hussein Goliatt, Leonardo Ul Hassan Kazmi, Syed Shabi Tao, Hai Civil and Environmental Engineering Department King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia Interdisciplinary Research Center for Membranes and Water Security King Fahd University of Petroleum & Minerals (KFUPM) Dhahran Saudi Arabia Department of Civil Engineering Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia UKM Selangor Bangi 43600 Malaysia Environmental Management Centre Institute of Climate Change Universiti Kebangsaan Malaysia Selangor UKM Bangi 43600 Malaysia Department of Oil and Gas Engineering Basrah University for Oil and Gas Basra Iraq Department of Thermofluids School of Mechanical Engineering Universiti Teknologi Malaysia UTM Skudai Johor Bahru 81310 Malaysia Department of Computer Sciences College of Education for Pure Science University of Thi-Qar Nasiriyah 64001 Iraq Information and Communication Technology Research Group Scientific Research Center Al-Ayen University Nasiriyah 64001 Iraq Department of Mechanical Engineering College of Engineering University of Baghdad Baghdad Iraq Computational and Applied Mechanics Department Federal University of Juiz de Fora 36036-900 Brazil Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention and Guangdong Provincial Key Laboratory of Marine Biotechnology Shantou University Shantou 515063 China School of Computer and Information Qiannan Normal University for Nationalities Guizhou Duyun 558000 China Institute of Big Data Application and Artificial Intelligence Qiannan Normal University for Nationalities Guizhou Duyun 558000 China Faculty of Data Science and Information Technology INTI International University 71800 Malaysia
This study proposes different standalone models viz: Elman neural network (ENN), Boosted Tree algorithm (BTA), and f relevance vector machine (RVM) for modeling arsenic (As (mg/kg)) and zinc (Zn (mg/kg)) in marine sed... 详细信息
来源: 评论
MOST DISCRIMINATIVE STIMULI FOR FUNCTIONAL CELL TYPE CLUSTERING
arXiv
收藏 引用
arXiv 2023年
作者: Burg, Max F. Zenkel, Thomas Vystrčilová, Michaela Oesterle, Jonathan Höfling, Larissa Willeke, Konstantin F. Lause, Jan Müller, Sarah Fahey, Paul G. Ding, Zhiwei Restivo, Kelli Sridhar, Shashwat Gollisch, Tim Berens, Philipp Tolias, Andreas S. Euler, Thomas Bethge, Matthias Ecker, Alexander S. International Max Planck Research School for Intelligent Systems Tübingen Germany Institute of Computer Science University of Göttingen Campus Institute Data Science Germany Tübingen AI Center University of Tübingen Germany Institute of Ophthalmic Research University of Tübingen Germany Centre for Integrative Neuroscience University of Tübingen Germany Institute for Bioinformatics and Medical Informatics Tübingen University Germany Hertie Institute for AI in Brain Health University of Tübingen Germany Department of Neuroscience Baylor College of Medicine HoustonTX United States Center for Neuroscience and Artificial Intelligence Baylor College of Medicine HoustonTX United States University Medical Center Göttingen Department of Ophthalmology Germany Bernstein Center for Computational Neuroscience Göttingen Germany University of Göttingen Germany Department of Electrical and Computer Engineering Rice University HoustonTX United States Max Planck Institute for Dynamics and Self-Organization Göttingen Germany
Identifying cell types and understanding their functional properties is crucial for unraveling the mechanisms underlying perception and cognition. In the retina, functional types can be identified by carefully selecte... 详细信息
来源: 评论
A practical guide to machine learning interatomic potentials – Status and future
arXiv
收藏 引用
arXiv 2025年
作者: Jacobs, Ryan Morgan, Dane Attarian, Siamak Meng, Jun Shen, Chen Wu, Zhenghao Xie, Clare Yijia Yang, Julia H. Artrith, Nongnuch Blaiszik, Ben Ceder, Gerbrand Choudhary, Kamal Csanyi, Gabor Cubuk, Ekin Dogus Deng, Bowen Drautz, Ralf Fu, Xiang Godwin, Jonathan Honavar, Vasant Isayev, Olexandr Johansson, Anders Kozinsky, Boris Martiniani, Stefano Ong, Shyue Ping Poltavsky, Igor Schmidt, K.J. Takamoto, So Thompson, Aidan Westermayr, Julia Wood, Brandon M. Department of Materials Science and Engineering University of Wisconsin-Madison MadisonWI55705 United States Harvard University Center for the Environment Harvard University CambridgeMA02138 United States John A. Paulson School of Engineering and Applied Sciences Harvard University CambridgeMA02138 United States Materials Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Utrecht3584 CG Netherlands Globus University of Chicago ChicagoIL United States Data Science and Learning Division Argonne National Laboratory LemontIL United States Department of Materials Science and Engineering University of California BerkeleyCA94720 United States Materials Sciences Division Lawrence Berkeley National Laboratory CA94720 United States Material Measurement Laboratory National Institute of Standards and Technology GaithersburgMD20899 United States Department of Engineering University of Cambridge CambridgeCB2 1PZ United Kingdom Google DeepMind Mountain ViewCA United States Ruhr-Universität Bochum Bochum44780 Germany Meta United States Orbital Materials London United Kingdom Department of Computer Science and Engineering The Pennsylvania State University University ParkPA United States College of Information Sciences and Technology The Pennsylvania State University University ParkPA United States Artificial Intelligence Research Laboratory The Pennsylvania State University University ParkPA United States Center for Artificial Intelligence Foundations and Scientific Applications The Pennsylvania State University University ParkPA United States Department of Chemistry Mellon College of Science Carnegie Mellon University PittsburghPA15213 United States Computational Biology Department School of Computer Science Carnegie Mellon University PittsburghPA15213 United States Courant Institute of Mathematical Sciences New York University New YorkNY10003 United States Center for Soft Matter Research Department of P
The rapid development and large body of literature on machine learning interatomic potentials (MLIPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The s... 详细信息
来源: 评论
Improving Policy-Oriented Agent-Based Modeling with History Matching: A Case Study
arXiv
收藏 引用
arXiv 2024年
作者: O’Gara, David Kerr, Cliff C. Klein, Daniel J. Binois, Mickaël Garnett, Roman Hammond, Ross A. Division of Computational and Data Sciences Washington University in St. Louis St. LouisMO United States Institute for Disease Modeling Bill & Melinda Gates Foundation SeattleWA United States Acumes Team Université Côte d’Azur Inria Sophia Antipolis France Department of Computer Science McKelvey School of Engineering Washington University in St. Louis St. LouisMO United States Public Health Brown School Washington University in St. Louis St. LouisMO United States Center on Social Dynamics and Policy Brookings Institution WashingtonDC United States The Santa Fe Institute Santa FeNM United States
Advances in computing power and data availability have led to growing sophistication in mechanistic mathematical models of social dynamics. Increasingly these models are used to inform real-world policy decision-makin... 详细信息
来源: 评论
Model Predictive Path Integral Control for Car Driving with Autogenerated Cost map Based on Prior Map and Camera Image
Model Predictive Path Integral Control for Car Driving with ...
收藏 引用
International Conference on Intelligent Transportation
作者: Alexander Buyval Aidar Gabdullin Konstantin Sozykin Alexandr Klimchik Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Skolkovo Institute of Science and Technology (Skoltech) Center for Computational and Data-Intensive Science and Engineering (CDISE) Russia
Model Predictive Path Integral (MPPI) algorithm is an efficient approach to control an autonomous car. However, it requires a cost map. Preparing a cost map in advance is a task that can be completed only for a static... 详细信息
来源: 评论
Parallel Planning:A New Motion Planning Framework for Autonomous Driving
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2019年 第1期6卷 236-246页
作者: Long Chen Xuemin Hu Wei Tian Hong Wang Dongpu Cao Fei-Yue Wang IEEE School of Data and Computer Science Sun Yat-sen University the School of Computer Science and Information Engineering Hubei University Institute of Measurement and Control Systems Karlsruhe Institute of Technology Department of Mechanical and Mechatronics Engineering University of Waterloo the State Key Laboratory of Management and Control for Complex Systems.Institute of Automation Chinese Academy of Sciences the Research Center for Military Computational Experiments and Parallel Systems Technology National University of Defense Technology
Motion planning is one of the most significant technologies for autonomous driving. To make motion planning models able to learn from the environment and to deal with emergency situations, a new motion planning framew... 详细信息
来源: 评论
MatterChat: A Multi-Modal LLM for Material science
arXiv
收藏 引用
arXiv 2025年
作者: Tang, Yingheng Xu, Wenbin Cao, Jie Ma, Jianzhu Gao, Weilu Farrell, Steve Erichson, Benjamin Mahoney, Michael W. Nonaka, Andy Yao, Zhi Applied Mathematics and Computational Research Division Lawrence Berkeley National Laboratory BerkeleyCA United States National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory BerkeleyCA United States NSF National AI Institute for Student-AI Teaming University of Colorado at Boulder Boulder United States Institute for AI Industry Research Tsinghua University Beijing China Department of Electrical and Computer Engineering The University of Utah Salt Lake CityUT United States Scientific Data Division Lawrence Berkeley National Laboratory BerkeleyCA United States International Computer Science Institute BerkeleyCA United States Department of Statistics University of California at Berkeley BerkeleyCA United States
Understanding and predicting the properties of inorganic materials is crucial for accelerating advancements in materials science and driving applications in energy, electronics, and beyond. Integrating material struct... 详细信息
来源: 评论
Stability of stochastic gradient descent on nonsmooth convex losses  20
Stability of stochastic gradient descent on nonsmooth convex...
收藏 引用
Proceedings of the 34th International Conference on Neural Information Processing Systems
作者: Raef Bassily Vitaly Feldman Cristóbal Guzmán Kunal Talwar Department of Computer Science & Engineering The Ohio State University Apple Pontificia Universidad Católica de Chile Institute for Mathematical and Computational Engineering ANID – Millennium Science Initiative Program Millennium Nucleus Center for the Discovery of Structures in Complex Data
Uniform stability is a notion of algorithmic stability that bounds the worst case change in the model output by the algorithm when a single data point in the dataset is replaced. An influential work of Hardt et al. [2...
来源: 评论
AA-ICP: Iterative closest point with anderson acceleration
AA-ICP: Iterative closest point with anderson acceleration
收藏 引用
2018 IEEE International Conference on Robotics and Automation, ICRA 2018
作者: Pavlov, Artem L. Ovchinnikov, Grigory W.V. Derbyshev, Dmitry Yu. Tsetserukou, Dzmitry Oseledets, Ivan V. Skolkovo Institute of Science and Technology Skolkovo Innovation Center Space Center Moscow143026 Russia Skolkovo Institute of Science and Technology Computational and Data-Intensive Science and Engineering Russia Moscow Institute of Physics and Technology Russia Skolkovo Institute of Science and Technology Space Center Russia Skolkovo Institute of Science and Technology Center for Computational and Data-Intensive Science and Engineering Russia
Iterative Closest Point (ICP) is a widely used method for performing scan-matching and registration. Being simple and robust, this method is still computationally expensive and may be challenging to use in real-time a... 详细信息
来源: 评论