咨询与建议

限定检索结果

文献类型

  • 401 篇 会议
  • 395 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 802 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 486 篇 工学
    • 305 篇 计算机科学与技术...
    • 270 篇 软件工程
    • 105 篇 生物工程
    • 103 篇 光学工程
    • 101 篇 生物医学工程(可授...
    • 89 篇 控制科学与工程
    • 88 篇 信息与通信工程
    • 44 篇 电气工程
    • 40 篇 电子科学与技术(可...
    • 38 篇 机械工程
    • 38 篇 仪器科学与技术
    • 25 篇 化学工程与技术
    • 15 篇 动力工程及工程热...
    • 11 篇 建筑学
    • 11 篇 土木工程
    • 11 篇 航空宇航科学与技...
  • 283 篇 理学
    • 121 篇 生物学
    • 99 篇 物理学
    • 91 篇 数学
    • 31 篇 统计学(可授理学、...
    • 26 篇 化学
    • 22 篇 系统科学
  • 101 篇 管理学
    • 54 篇 管理科学与工程(可...
    • 47 篇 图书情报与档案管...
    • 23 篇 工商管理
  • 84 篇 医学
    • 76 篇 临床医学
    • 56 篇 基础医学(可授医学...
    • 34 篇 药学(可授医学、理...
    • 25 篇 公共卫生与预防医...
  • 19 篇 法学
    • 17 篇 社会学
  • 9 篇 经济学
  • 8 篇 教育学
  • 8 篇 农学
  • 3 篇 艺术学
  • 1 篇 文学

主题

  • 45 篇 computer vision
  • 31 篇 cameras
  • 30 篇 computer science
  • 21 篇 robot sensing sy...
  • 19 篇 laboratories
  • 19 篇 robots
  • 19 篇 feature extracti...
  • 19 篇 training
  • 18 篇 image segmentati...
  • 17 篇 deep learning
  • 17 篇 humans
  • 16 篇 robustness
  • 15 篇 computational mo...
  • 15 篇 robot vision sys...
  • 14 篇 automation
  • 14 篇 face recognition
  • 14 篇 shape
  • 14 篇 layout
  • 13 篇 object detection
  • 13 篇 machine learning

机构

  • 18 篇 center for resea...
  • 11 篇 university of ch...
  • 11 篇 department of co...
  • 10 篇 university of sc...
  • 10 篇 graphic era hill...
  • 10 篇 department of co...
  • 10 篇 department of co...
  • 10 篇 heidelberg
  • 9 篇 center for resea...
  • 9 篇 department of co...
  • 8 篇 université de st...
  • 8 篇 school of inform...
  • 7 篇 infn sezione di ...
  • 7 篇 north-west unive...
  • 7 篇 artificial intel...
  • 7 篇 via s. sofia 62 ...
  • 7 篇 ai and robotics ...
  • 7 篇 department of co...
  • 7 篇 ncsr demokritos ...
  • 7 篇 college of compu...

作者

  • 33 篇 chen chen
  • 25 篇 al-turjman fadi
  • 21 篇 fadi al-turjman
  • 20 篇 ramiz salama
  • 15 篇 salama ramiz
  • 12 篇 satya prakash ya...
  • 12 篇 chadi altrjman
  • 11 篇 shah mubarak
  • 10 篇 yadav satya prak...
  • 9 篇 y. aloimonos
  • 8 篇 ferrara g.
  • 8 篇 ardid m.
  • 8 篇 kulikovskiy v.
  • 8 篇 lee seong-whan
  • 8 篇 díaz a.f.
  • 8 篇 boumaaza j.
  • 8 篇 enzenhöfer a.
  • 8 篇 celli s.
  • 8 篇 carretero v.
  • 8 篇 satvik vats

语言

  • 762 篇 英文
  • 34 篇 其他
  • 7 篇 中文
检索条件"机构=Center for Computer Vision and Robotics Research Department of Computer Science"
802 条 记 录,以下是1-10 订阅
排序:
Segmentation of Head and Neck Tumors Using Dual PET/CT Imaging:Comparative Analysis of 2D,2.5D,and 3D Approaches Using UNet Transformer
收藏 引用
computer Modeling in Engineering & sciences 2024年 第12期141卷 2351-2373页
作者: Mohammed A.Mahdi Shahanawaj Ahamad Sawsan A.Saad Alaa Dafhalla Alawi Alqushaibi Rizwan Qureshi Information and Computer Science Department College of Computer Science and EngineeringUniversity of Ha’ilHa’il55476Saudi Arabia Software Engineering Department College of Computer Science and EngineeringUniversity of Ha’ilHa’il55476Saudi Arabia Computer Engineering Department College of Computer Science and EngineeringUniversity of Ha’ilHa’il55476Saudi Arabia Department of Computer and Information Sciences Universiti Teknologi PetronasSeri Iskandar32610Malaysia Center for Research in Computer Vision(CRCV) University of Central FloridaOrlandoFL 32816USA
The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment p... 详细信息
来源: 评论
LEARNING SEMANTIC PROXIES FROM VISUAL PROMPTS FOR PARAMETER-EFFICIENT FINE-TUNING IN DEEP METRIC LEARNING  12
LEARNING SEMANTIC PROXIES FROM VISUAL PROMPTS FOR PARAMETER-...
收藏 引用
12th International Conference on Learning Representations, ICLR 2024
作者: Ren, Li Chen, Chen Wang, Liqiang Hua, Kien Department of Computer Science University of Central Florida United States Center for Research in Computer Vision University of Central Florida United States
Deep Metric Learning (DML) has long attracted the attention of the machine learning community as a key objective. Existing solutions concentrate on fine-tuning the pre-trained models on conventional image datasets. As... 详细信息
来源: 评论
Exploring Parameter-Efficient Fine-Tuning to Enable Foundation Models in Federated Learning
Exploring Parameter-Efficient Fine-Tuning to Enable Foundati...
收藏 引用
2024 IEEE International Conference on Big Data, BigData 2024
作者: Sun, Guangyu Khalid, Umar Mendieta, Matias Wang, Pu Chen, Chen University of Central Florida Center for Research in Computer Vision OrlandoFL United States University of North Carolina at Charlotte Department of Computer Science CharlotteNC United States
Federated learning (FL) has emerged as a promising paradigm for enabling the collaborative training of models without centralized access to the raw data on local devices. In the typical FL paradigm (e.g., FedAvg), mod... 详细信息
来源: 评论
A multi-feature-based intelligent redundancy elimination scheme for cloud-assisted health systems
收藏 引用
CAAI Transactions on Intelligence Technology 2024年 第2期9卷 491-510页
作者: Ling Xiao Beiji Zou Xiaoyan Kui Chengzhang Zhu Wensheng Zhang Xuebing Yang Bob Zhang School of Computer Science and Engineering Central South UniversityChangshaChina Hunan Engineering Research Center of Machine Vision and Intelligent Medicine Central South UniversityChangshaChina The College of Literature and Journalism Central South UniversityChangshaChina Institute of Automation Chinese Academy of SciencesBeijingChina Department of Computer and Information Science University of MacaoMacaoChina
Redundancy elimination techniques are extensively investigated to reduce storage overheads for cloud-assisted health *** eliminates the redundancy of duplicate blocks by storing one physical instance referenced by mul... 详细信息
来源: 评论
Maximizing Resource Efficiency in Cloud Data centers through Knowledge-Based Flower Pollination Algorithm (KB-FPA)
收藏 引用
computers, Materials & Continua 2024年 第6期79卷 3757-3782页
作者: Nidhika Chauhan Navneet Kaur Kamaljit Singh Saini Sahil Verma Kavita Ruba Abu Khurma Pedro A.Castillo University Institute of Computing Department Chandigarh UniversityPunjab140413India Department of Computer Science and Engineering Chandigarh UniversityPunjab140413India Universidade Federal do Piauí TeresinaPiauí64049-550Brazil MEU Research Unit Faculty of Information TechnologyMiddle East UniversityAmman11831Jordan Applied Science Research Center Applied Science Private UniversityAmman11931Jordan Department of Computer Engineering Automatics and RoboticsUniversity of GranadaGranada18071Spain
Cloud computing is a dynamic and rapidly evolving field,where the demand for resources fluctuates *** paper delves into the imperative need for adaptability in the allocation of resources to applications and services ... 详细信息
来源: 评论
SELF-JOINT SUPERVISED LEARNING  10
SELF-JOINT SUPERVISED LEARNING
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Kardan, Navid Hill, Mitchell Shah, Mubarak Center for Research in Computer Vision Department of Computer Science Department of Statistics and Data Science University of Central Florida United States
Supervised learning is a fundamental framework used to train machine learning systems. A supervised learning problem is often formulated using an i.i.d. assumption that restricts model attention to a single relevant s... 详细信息
来源: 评论
Unsupervised Object Detection using Patch Based Image Classifier and Gradient Importance Map
收藏 引用
International Journal of Information Technology (Singapore) 2025年 第4期17卷 2407-2416页
作者: Jain, Vanita Pillai, Manu S. Jain, Achin Dubey, Arun Kumar Department of Electronic Science University of Delhi Delhi India Center for Research in Computer Vision University of Central Florida Orlando United States Bharati Vidyapeeth’s College of Engineering New Delhi India
Image classification in computer vision has seen tremendous amount of success in recent years. Deep learning has played a pivotal role in achieving human level performance in many image recognition challenges and benc... 详细信息
来源: 评论
DUAL STUDENT NETWORKS FOR DATA-FREE MODEL STEALING  11
DUAL STUDENT NETWORKS FOR DATA-FREE MODEL STEALING
收藏 引用
11th International Conference on Learning Representations, ICLR 2023
作者: Beetham, James Kardan, Navid Mian, Ajmal Shah, Mubarak Center for Research in Computer Vision University of Central Florida OrlandoFL32816 United States Department of Computer Science University of Western Australia CrawleyWA6009 Australia
Data-free model stealing aims to replicate a target model without direct access to either the training data or the target model. To accomplish this, existing methods use a generator to produce samples in order to trai... 详细信息
来源: 评论
Multi-stage Conditional GAN Architectures for Person-Image Generation  1
收藏 引用
1st International Conference and 2nd International Conference on Deep Learning Theory and Applications, DeLTA 2020 and DeLTA 2021
作者: Kurupathi, Sheela Raju Dumpala, Veeru Stricker, Didier Department of Computer Science Technical University of Kaiserslautern Kaiserslautern Germany Augmented Vision German Research Center for Artificial Intelligence Kaiserslautern Germany
Generating realistic human images has been of great value in recent times due to their varied application in robotics, computer Graphics, Movie Making, and Games. Advancements in Artificial Intelligence (AI) and Machi... 详细信息
来源: 评论
Edge-SAN: An Edge-Prompted Foundation Model for Accurate Nuclei Instance Segmentation in Histology Images
Edge-SAN: An Edge-Prompted Foundation Model for Accurate Nuc...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Wu, Xuening Shen, Yiqing Zhao, Qing Kang, Yanlan Hu, Ruiqi Zhang, Wenqiang Fudan University Shanghai Engineering Research Center of Ai & Robotics Academy for Engineering & Technology Shanghai China Johns Hopkins University Department of Computer Science BaltimoreMD United States Hong Kong Polytechnic University Department of Applied Mathematics Hong Kong Fudan University Engineering Research Center of Ai & Robotics Ministry of Education Academy for Engineering & Technology School of Computer Science Shanghai China
Accurate nuclei segmentation is fundamental in histology image analysis, playing an essential role in cancer grading and diagnosis. However, this task remains challenging due to variations in staining protocols, heter... 详细信息
来源: 评论