Artificial Intelligence (AI) research in breast cancer Magnetic Resonance Imaging (MRI) faces challenges due to limited expert-labeled segmentations. To address this, we present a multicenter dataset of 1506 pretreatm...
详细信息
We investigate the occurrence of many-body localization (MBL) on a spin-1/2 transverse-field Ising model defined on a Chimera connectivity graph with random exchange interactions and longitudinal fields. We observe a ...
详细信息
We investigate the occurrence of many-body localization (MBL) on a spin-1/2 transverse-field Ising model defined on a Chimera connectivity graph with random exchange interactions and longitudinal fields. We observe a transition from an ergodic phase to a nonthermal phase for individual energy eigenstates induced by a critical disorder strength for the Ising parameters. Our result follows from the analysis of both the mean half-system block entanglement and the energy-level statistics. We identify the critical point associated with this transition using the maximum variance of the block entanglement over the disorder ensemble as a function of the disorder strength. The calculated energy density phase diagram shows the existence of a mobility edge in the energy spectrum. In terms of the energy-level statistics, the system changes from the Gaussian orthogonal ensemble for weak disorder to a Poisson distribution limit for strong randomness, which implies localization behavior. We then realize the time-independent disordered Ising Hamiltonian experimentally using a reverse annealing quench-pause-quench protocol on a D-wave 2000Q programmable quantum annealer. We characterize the transition from the thermal to the localized phase through magnetization measurements at the end of the annealing dynamics, and the results are compatible with our theoretical prediction for the critical point. However, the same behavior can be reproduced using a classical spin-vector Monte Carlo simulation, which suggests that genuine quantum signatures of the phase transition remain out of reach using this experimental platform and protocol.
With current semiconductor technology reaching its physical limits, special-purpose hardware has emerged as an option to tackle specific computing-intensive challenges. Optimization in the form of solving Quadratic Un...
详细信息
With the evolution of the 5G, 6G and beyond, device-to-device (D2D) communication has been developed as an energy-, and spectrum-efficient solution. In cellular network, D2D links need to share the same spectrum resou...
详细信息
There is a folkloric belief that a depth-Θ(m) quantum circuit is needed to estimate the trace of the product of m density matrices (i.e., a multivariate trace), a subroutine crucial to applications in condensed matte...
详细信息
This white paper explores the road to implementing broadband connectivity in future 6G wireless systems. Different categories of use cases are considered, from extreme capacity with peak data rates up to 1 Tbps, to ra...
详细信息
This white paper explores the road to implementing broadband connectivity in future 6G wireless systems. Different categories of use cases are considered, from extreme capacity with peak data rates up to 1 Tbps, to raising the typical data rates by orders-of-magnitude, to support broadband connectivity at railway speeds up to 1000 km/h. To achieve these goals, not only the terrestrial networks will be evolved but they will also be integrated with satellite networks, all facilitating autonomous systems and various interconnected structures. We believe that several categories of enablers at the infrastructure, spectrum, and protocol/algorithmic levels are required to realize the intended broadband connectivity goals in 6G. At the infrastructure level, we consider ultra-massive MIMO technology (possibly implemented using holographic radio), intelligent reflecting surfaces, user-centric and scalable cell-free networking, integrated access and backhaul, and integrated space and terrestrial networks. At the spectrum level, the network must seamlessly utilize sub-6 GHz bands for coverage and spatial multiplexing of many devices, while higher bands will be used for pushing the peak rates of point-to-point links. The latter path will lead to THz communications complemented by visible light communications in specific scenarios. At the protocol/algorithmic level, the enablers include improved coding, modulation, and waveforms to achieve lower latencies, higher reliability, and reduced complexity. Different options will be needed to optimally support different use cases. The resource efficiency can be further improved by using various combinations of full-duplex radios, interference management based on rate-splitting, machine-learning-based optimization, coded caching, and broadcasting. Finally, the three levels of enablers must be utilized not only to deliver better broadband services in urban areas, but also to provide full-coverage broadband connectivity must be one of the k
Electronic nose has been proven effective in alternative herbal medicine classification, but due to the nature of supervised learning, previous research heavily relies on the labelled training data, which are time-cos...
详细信息
Over the past two decades, synchronization, as an interesting collective behavior of complex dynamical networks, has been attracting much attention. To reveal and analyze the inherent mechanism of synchronization in c...
详细信息
Over the past two decades, synchronization, as an interesting collective behavior of complex dynamical networks, has been attracting much attention. To reveal and analyze the inherent mechanism of synchronization in complex dynamical networks with time delays in nodes, this paper attempts to use PD and PI control protocols to achieve synchronization. Based on a classical network model, we investigate the PD and PI control for synchronization of complex dynamical networks with delayed nodes and obtain some sufficient conditions. By using Lyapunov functions and appropriate state transformations, we prove that global synchronization can be achieved via the above control protocols. Finally, some simulation examples are illustrated to validate the effectiveness of the proposed theoretical results.
Chirality, nonreciprocity, and quantum correlations are at the center of a wide range of intriguing effects and applications across natural sciences and emerging quantum technologies. However, the direct link combinin...
详细信息
Strain is extensively used to controllably tailor the electronic properties of materials. In the context of indirect band-gap semiconductors such as silicon, strain lifts the valley degeneracy of the six conduction ba...
详细信息
暂无评论