咨询与建议

限定检索结果

文献类型

  • 179 篇 会议
  • 152 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 333 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 202 篇 工学
    • 74 篇 计算机科学与技术...
    • 74 篇 软件工程
    • 70 篇 控制科学与工程
    • 34 篇 电气工程
    • 23 篇 化学工程与技术
    • 22 篇 机械工程
    • 18 篇 动力工程及工程热...
    • 15 篇 电子科学与技术(可...
    • 13 篇 信息与通信工程
    • 13 篇 土木工程
    • 13 篇 生物工程
    • 12 篇 力学(可授工学、理...
    • 11 篇 交通运输工程
    • 10 篇 建筑学
    • 9 篇 环境科学与工程(可...
    • 7 篇 光学工程
    • 7 篇 航空宇航科学与技...
    • 5 篇 材料科学与工程(可...
    • 5 篇 安全科学与工程
  • 160 篇 理学
    • 89 篇 数学
    • 39 篇 系统科学
    • 28 篇 物理学
    • 21 篇 化学
    • 18 篇 统计学(可授理学、...
    • 17 篇 生物学
    • 7 篇 大气科学
  • 47 篇 管理学
    • 42 篇 管理科学与工程(可...
    • 16 篇 工商管理
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 医学
  • 5 篇 法学
    • 5 篇 社会学
  • 4 篇 军事学
  • 2 篇 教育学
  • 1 篇 农学

主题

  • 14 篇 mathematical mod...
  • 12 篇 trajectory
  • 11 篇 optimization
  • 8 篇 control systems
  • 8 篇 approximation me...
  • 8 篇 robustness
  • 7 篇 stability analys...
  • 7 篇 optimal control
  • 7 篇 artificial neura...
  • 7 篇 deterministic le...
  • 6 篇 fault diagnosis
  • 6 篇 sun
  • 6 篇 switched systems
  • 6 篇 predictive model...
  • 6 篇 multi-agent syst...
  • 6 篇 radial basis fun...
  • 5 篇 power systems
  • 5 篇 neural networks
  • 5 篇 educational inst...
  • 5 篇 switches

机构

  • 10 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 8 篇 center of electr...
  • 7 篇 beijing laborato...
  • 7 篇 key laboratory o...
  • 7 篇 beijing artifici...
  • 7 篇 control and simu...
  • 6 篇 center for contr...
  • 6 篇 faculty of infor...
  • 6 篇 key laboratory o...
  • 5 篇 school of automa...
  • 5 篇 school of automa...
  • 5 篇 college of autom...
  • 5 篇 school of automa...
  • 5 篇 center of contro...
  • 5 篇 school of mechan...
  • 4 篇 engineering rese...
  • 4 篇 electric operati...
  • 4 篇 optimization and...
  • 4 篇 key laboratory o...

作者

  • 19 篇 cong wang
  • 14 篇 christof büskens
  • 10 篇 tianrui chen
  • 9 篇 zhendong sun
  • 8 篇 soumia el hani
  • 8 篇 wang zhenlei
  • 8 篇 wang xin
  • 8 篇 esfahani peyman ...
  • 7 篇 büskens christof
  • 7 篇 wang cong
  • 7 篇 xin wang
  • 7 篇 hu xiaoming
  • 6 篇 zhenlei wang
  • 6 篇 gu ke
  • 6 篇 zhou chengxu
  • 6 篇 daghouri amina
  • 5 篇 xiaoming hu
  • 5 篇 sun weijun
  • 5 篇 kundu soumya
  • 5 篇 zou tao

语言

  • 306 篇 英文
  • 15 篇 其他
  • 13 篇 中文
检索条件"机构=Center for Control and Optimization"
333 条 记 录,以下是21-30 订阅
排序:
Indoor Localization for an Autonomous Model Car: A Marker-Based Multi-Sensor Fusion Framework
arXiv
收藏 引用
arXiv 2023年
作者: Li, Xibo Patel, Shruti Stronzek-Pfeifer, David Büskens, Christof The Working Group Optimization and Optimal Control Center for Industrial Mathematics University of Bremen Bremen28359 Germany
Global navigation satellite systems readily provide accurate position information when localizing a robot outdoors. However, an analogous standard solution does not exist yet for mobile robots operating indoors. This ... 详细信息
来源: 评论
Unbalanced few-shot classification based on ME-MAML framework
Unbalanced few-shot classification based on ME-MAML framewor...
收藏 引用
第43届中国控制会议
作者: Zherun Liao Zheng Lv Qiao Sun Jun Zhao Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education Dalian University of Technology Electric Operations Control Center State Grid Dalian Power Supply Company
Aiming at the few-shot problem of lack of sufficient samples and uneven samples, which is common in medical image classification tasks, this paper proposes a meta-learning framework ME-MAML(Medical ModelAgnostic Meta-... 详细信息
来源: 评论
Investigating the Power Budget of a 3U Nanosatellite Designed for Earth Observation  10
Investigating the Power Budget of a 3U Nanosatellite Designe...
收藏 引用
10th IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2023
作者: Daghouri, Amina El Hachimi, Youssef Ouhammam, Abdelaali Chanoui, Mohammed Alae Elhani, Soumia Mahmoudi, Hassane ENSAM University Center for Research in Space Technologies Energy Optimization Diagnosis and Control Team EMI Mohammed v University Rabat Morocco Power Electronics Smart Control Techniques Automatic and Robotics Team EMI University Center for Research in Space Technologies EMI Mohammed v University Rabat Morocco EST University Center for Research in Space Technologies LASTIMI Laboratory EMI Mohammed v University Rabat Morocco
The Electrical Power System (EPS) is one of the most critical subsystems of a nanosatellite. Thus, its design should be done carefully for a successful mission. To verify that the power needs of its subsystems does no... 详细信息
来源: 评论
Let Hybrid A* Path Planner Obey Traffic Rules: A Deep Reinforcement Learning-Based Planning Framework
Let Hybrid A* Path Planner Obey Traffic Rules: A Deep Reinfo...
收藏 引用
International Conference on Autonomous Robots and Agents, ICARA
作者: Xibo Li Shruti Patel Christof Büskens Optimization and Optimal Control Center for Industrial Mathematics University of Bremen Bremen Germany Department for Autonomous Systems TOPAS Industriemathematik Innovation gGmbH Bremen Germany
Deep reinforcement learning (DRL) allows a system to interact with its environment and take actions by training an efficient policy that maximizes self-defined rewards. In autonomous driving, it can be used as a strat... 详细信息
来源: 评论
Analysis of CubeSat thermal performance using various PV panel configurations  10
Analysis of CubeSat thermal performance using various PV pan...
收藏 引用
10th IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2023
作者: Narimane, Blanchete Daghouri, Amina Bah, Abdellah El Hani, Soumia ENSAM University Center for Research in Space Technologies EMI Mohammed v University Royal Centre for Space Research and Studies Thermal and Energy Research Team Rabat Morocco ENSAM University Center for Research in Space Technologies Energy Optimization Diagnosis and Control Team EMI Mohammed v University Rabat Morocco
Managing the temperature of a nanosatellite is crucial to ensure the proper functioning of the payload and the platform during a mission. A thermal engineer faces the challenge of keeping both within acceptable temper... 详细信息
来源: 评论
DESIGN OF EUTROPHICATION MONITORING PLATFORM FOR CHAOHU CONNECTED RIVER CHANNEL BASED ON LoRa AND DEEP LEARNING
UPB Scientific Bulletin, Series C: Electrical Engineering an...
收藏 引用
UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science 2023年 第3期85卷 285-296页
作者: Kong, Bing Yu, Mei Ye, Song Xu, Xiaoyong Xiang, Rong School of Electronic Engineering Chaohu University Hefei Anhui China Graduate School Angeles University Foundation Manila Philippines School of Chemistry & Material Engineering Chaohu University Hefei Anhui China Industrial Process Control Optimization and Automation Engineering Research Center Chaohu University Hefei Anhui China Key Laboratory of Novel Ceramic and Powder Engineering Chaohu University Anhui China
Traditional methods cannot meet the requirements of real-time monitoring and scientific prevention and control of blue-green algae bloom. This paper uses multi-parameter sensors, LoRa module, 4G module, PLC and shore-... 详细信息
来源: 评论
Research on Blood Glucose Regulation of Type I Diabetes Based on Adaptive RBF Network
Research on Blood Glucose Regulation of Type I Diabetes Base...
收藏 引用
2022 Chinese Automation Congress, CAC 2022
作者: Liu, YunShuan Sun, KaiBiao Dalian University of Technology The Key Laboratory of Intelligent Control and Optimization for Industrial Equipment Ministry of Education Liaoning Dalian China Dalian University of Technology Professional Technology Innovation Center Distributed Control for Industrial Equipment of Liaoning Province Dalian China
A backstepping control algorithm based on an adaptive RBF neural network is proposed for the glucose regulation problem in type I diabetes. Firstly, the complex mechanism of glucose-insulin action in human body is des... 详细信息
来源: 评论
Let Hybrid A∗ Path Planner Obey Traffic Rules: A Deep Reinforcement Learning-Based Planning Framework
arXiv
收藏 引用
arXiv 2024年
作者: Li, Xibo Patel, Shruti Büskens, Christof The working group Optimization and Optimal Control Center for Industrial Mathematics University of Bremen Bremen28359 Germany TOPAS Industriemathematik InnovationgGmbH Bremen28359 Germany
Deep reinforcement learning (DRL) allows a system to interact with its environment and take actions by training an efficient policy that maximizes self-defined rewards. In autonomous driving, it can be used as a strat... 详细信息
来源: 评论
Zero-shot industrial image denoising with lightweight network
Zero-shot industrial image denoising with lightweight networ...
收藏 引用
2024 International Workshop on Automation, control, and Communication Engineering, IWACCE 2024
作者: Zhou, Chengxu Fan, Xiaojie Wang, Simeng Liu, Hongyan Gu, Ke School of Information Science and Technology Beijing University of Technology Beijing China Engineering Research Center of Intelligent Perception and Autonomous Control of Ministry of Education China Beijing Laboratory of Smart Environmental Protection China Beijing Artificial Intelligence Institute China School of Electronic & Information Engineering Liaoning University of Technology Liaoning China Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education Dalian University of Technology China
Industrial images are often captured under full-time and full-weather conditions, leading to inevitable noise during the imaging process, which can impact subsequent detection algorithms. In recent years, image denois... 详细信息
来源: 评论
Short-Term Reactive Load Forecasting Based on a Hybrid Machine Learning Model
Short-Term Reactive Load Forecasting Based on a Hybrid Machi...
收藏 引用
2022 Power System and Green Energy Conference, PSGEC 2022
作者: Qi, Le Chen, Mingyuan Song, Jifeng Zhang, Minyu Zheng, Wenbin Shang, Qinghua Power Dispatching Control Center of Guangxi Power Grid Co. Ltd Nanning China Guangxi University Key Laboratory of Guangxi Electric Power System Optimization and Energy-Savig Technology Nanning China
With the improvement of people's living standards and the access to new energy sources such as rooftop photovoltaics, the variety of electricity consumption on the customer side has increased dramatically, placing... 详细信息
来源: 评论