咨询与建议

限定检索结果

文献类型

  • 210 篇 期刊文献
  • 179 篇 会议
  • 1 册 图书

馆藏范围

  • 390 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 253 篇 工学
    • 185 篇 计算机科学与技术...
    • 158 篇 软件工程
    • 52 篇 电气工程
    • 51 篇 信息与通信工程
    • 37 篇 光学工程
    • 37 篇 生物工程
    • 36 篇 生物医学工程(可授...
    • 27 篇 控制科学与工程
    • 19 篇 电子科学与技术(可...
    • 11 篇 仪器科学与技术
    • 11 篇 交通运输工程
    • 10 篇 安全科学与工程
    • 8 篇 机械工程
    • 8 篇 动力工程及工程热...
  • 153 篇 理学
    • 71 篇 数学
    • 44 篇 生物学
    • 36 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 12 篇 系统科学
    • 11 篇 地球物理学
    • 7 篇 化学
  • 50 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 14 篇 工商管理
  • 25 篇 医学
    • 19 篇 基础医学(可授医学...
    • 19 篇 临床医学
    • 13 篇 公共卫生与预防医...
    • 10 篇 药学(可授医学、理...
  • 10 篇 法学
    • 7 篇 社会学
  • 8 篇 教育学
    • 8 篇 教育学
  • 7 篇 农学
  • 6 篇 经济学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 14 篇 predictive model...
  • 13 篇 deep learning
  • 13 篇 accuracy
  • 12 篇 feature extracti...
  • 12 篇 data models
  • 11 篇 machine learning
  • 11 篇 training
  • 10 篇 computational mo...
  • 10 篇 semantics
  • 9 篇 magnetic resonan...
  • 7 篇 image segmentati...
  • 7 篇 prediction algor...
  • 6 篇 three-dimensiona...
  • 6 篇 convolution
  • 6 篇 convolutional ne...
  • 5 篇 semantic segment...
  • 5 篇 big data
  • 5 篇 signal processin...
  • 5 篇 graph neural net...
  • 5 篇 real-time system...

机构

  • 23 篇 college of compu...
  • 19 篇 engineering rese...
  • 17 篇 fujian key labor...
  • 14 篇 national institu...
  • 13 篇 university of ch...
  • 12 篇 research center ...
  • 11 篇 college of compu...
  • 9 篇 key laboratory o...
  • 9 篇 inner mongolia e...
  • 9 篇 center for digit...
  • 9 篇 inner mongolia k...
  • 8 篇 big data and int...
  • 7 篇 shanghai collabo...
  • 7 篇 department of ph...
  • 7 篇 department of ph...
  • 7 篇 beijing advanced...
  • 6 篇 paul c. lauterbu...
  • 6 篇 hebei key labora...
  • 6 篇 engineering rese...
  • 6 篇 hebei engineerin...

作者

  • 13 篇 wang lihui
  • 11 篇 mahmood khalid
  • 9 篇 jian-tao zhou
  • 7 篇 das ashok kumar
  • 7 篇 zhang qinhu
  • 6 篇 qu ying
  • 6 篇 li cheng
  • 6 篇 zhu yuemin
  • 6 篇 weixing xie
  • 6 篇 lihui wang
  • 6 篇 junfeng yao
  • 5 篇 xin luo
  • 5 篇 xie weixing
  • 5 篇 yao junfeng
  • 5 篇 cheng jian
  • 5 篇 chenxi zhang
  • 5 篇 yuan ye
  • 5 篇 fan wenxin
  • 5 篇 wang li
  • 5 篇 ye haishan

语言

  • 354 篇 英文
  • 32 篇 其他
  • 19 篇 中文
检索条件"机构=Center for Data Science and Intelligent Computing"
390 条 记 录,以下是111-120 订阅
排序:
Towards a Unified Transformer-based Framework for Scene Graph Generation and Human-object Interaction Detection
arXiv
收藏 引用
arXiv 2023年
作者: He, Tao Gao, Lianli Song, Jingkuan Li, Yuan-Fang Laboratory of Intelligent Collaborative Computing University of Electronic Science and Technology of China China Department of Data Science and AI Faculty of Information Technology Monash University Australia Center for Future Media University of Electronic Science and Technology of China China
Scene graph generation (SGG) and human-object interaction (HOI) detection are two important visual tasks aiming at localising and recognising relationships between objects, and interactions between humans and objects,... 详细信息
来源: 评论
A Spectral Bipartite Analogue of the Erdős-Sós Conjecture
SSRN
收藏 引用
SSRN 2024年
作者: Geng, Xianya Wei, Wei Feng, Zhiming Center of Intelligent Computing and Applied Statistics School of Mathematics Physics and Statistics Shanghai University of Engineering Science Shanghai China School of Mathematics and Big Data Anhui University of Science & Technology Huainan China School of Mathematics and Statistics Xinyang Normal University Xinyang China
A well-known conjecture of Erdős and Sós states that each graph on ν vertices with size more than ν(t2−1) contains every tree with order t + 1 as a subgraph. In 2010, Nikiforov presented the spectral Erdős-S&... 详细信息
来源: 评论
High-Level Synthesis for Microfluidic Biochips Considering Actual Volume Management and Channel Storage
High-Level Synthesis for Microfluidic Biochips Considering A...
收藏 引用
IEEE International Symposium on Quality Electronic Design
作者: Zhengyang Chen Yuhan Zhu Zhen Chen Zhisheng Chen Genggeng Liu College of Computer and Data Science Fuzhou University Fuzhou China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou China Fujian Key Laboratory of Network Computing and Intelligent Information Processing (Fuzhou University) Fuzhou China School of Informatics Xiamen University Xiamen China
In recent years, microfluidic biochips have been widely applied in various fields of human society. The emergence of distributed channel-storage architecture enables fluid to be directly cached within the flow channel... 详细信息
来源: 评论
Deformable registration framework for glioma images with absent correspondence based on auxiliary-image-aided intensity-consistency constraint
Deformable registration framework for glioma images with abs...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Tang, Kun Wang, Lihui Yang, Menglong Xu, Jingwen Cheng, Xinyu Zhang, Jian Zhu, Yuemin Wei, Hongjiang Ministry of Education State Key Laboratory of Public Big Data College of Computer Science and Technology Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province Engineering Research Center of Text Computing & Cognitive Intelligence Guiyang China Univ Lyon Insa Lyon Cnrs Inserm Creatis Umr 5220 U1206 Lyon France Shanghai Jiao Tong University School of Biomedical Engineering Shanghai200240 China
Considering the tumor aggressive nature and the significant changes in anatomical structure, aligning the preoperative and follow up scans of glioma patients remains a challenge due to the presence of regions with abs... 详细信息
来源: 评论
A DQN-Based Approach for Online Service Placement in Mobile Edge computing  16th
A DQN-Based Approach for Online Service Placement in Mobile ...
收藏 引用
16th EAI International Conference on Collaborative computing: Networking, Applications, and Worksharing, CollaborateCom 2020
作者: Jie, Xiaogan Liu, Tong Gao, Honghao Cao, Chenhong Wang, Peng Tong, Weiqin School of Computer Engineering and Science Shanghai University Shanghai China Shanghai Key Laboratory of Data Science Shanghai China Shanghai Institute for Advanced Communication and Data Science Shanghai University Shanghai China Shanghai Engineering Research Center of Intelligent Computing System Shanghai China
Due to the development of 5G networks, computation intensive applications on mobile devices have emerged, such as augmented reality and video stream analysis. Mobile edge computing is put forward as a new computing pa... 详细信息
来源: 评论
An Efficient and Truthful Online Incentive Mechanism for a Social Crowdsensing Network  16th
An Efficient and Truthful Online Incentive Mechanism for a S...
收藏 引用
16th EAI International Conference on Collaborative computing: Networking, Applications, and Worksharing, CollaborateCom 2020
作者: Fang, Lu Liu, Tong Gao, Honghao Cao, Chenhong Li, Weimin Tong, Weiqin School of Computer Engineering and Science Shanghai University Shanghai China Shanghai Key Laboratory of Data Science Shanghai China Shanghai Institute for Advanced Communication and Data Science Shanghai University Shanghai China Shanghai Engineering Research Center of Intelligent Computing System Shanghai China
Crowdsening plays an important role in spatiotemporal data collection by leveraging ubiquitous smart devices equipped with sensors. Considering rational and strategic device users, designing a truthful incentive mecha... 详细信息
来源: 评论
Rethinking Super-Resolution as Text-Guided Details Generation
arXiv
收藏 引用
arXiv 2022年
作者: Ma, Chenxi Yan, Bo Lin, Qing Tan, Weimin Chen, Siming School of Computer Science Shanghai Key Laboratory of Intelligent Information Processing Shanghai Collaborative Innovation Center of Intelligent Visual Computing Fudan University China School of Data Science Fudan University China
Deep neural networks have greatly promoted the performance of single image super-resolution (SISR). Conventional methods still resort to restoring the single high-resolution (HR) solution only based on the input of im... 详细信息
来源: 评论
Outlier detection algorithm based on density and distance
Outlier detection algorithm based on density and distance
收藏 引用
2021 3rd International Conference on Applied Machine Learning and data science, ICAMLDS 2021
作者: Qu, Ying Guo, Fei School of Economics and Management Hebei University of Science and Technology Shijiazhuang Hebei050018 China Data Science and Intelligent Computing Research Center Hebei University of Science and Technology Shijiazhuang Hebei050018 China
In order to solve the problem that the existing outlier detection algorithm is difficult to detect the one-dimensional integer data set with uneven frequency distribution and uniform distance distribution and low accu... 详细信息
来源: 评论
Multi-consensus decentralized accelerated gradient descent
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2023年 第1期24卷 14474-14523页
作者: Haishan Ye Luo Luo Ziang Zhou Tong Zhang Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'an China School of Data Science Fudan University Shanghai China Department of Computing The Hong Kong Polytechnic University Hong Kong China Computer Science & Mathematics The Hong Kong University of Science and Technology Hong Kong China
This paper considers the decentralized convex optimization problem, which has a wide range of applications in large-scale machine learning, sensor networks, and control theory. We propose novel algorithms that achieve... 详细信息
来源: 评论
Multi-scale cyclical similarity prototype refinement for few-shot breast ultrasound image segmentation
Multi-scale cyclical similarity prototype refinement for few...
收藏 引用
International Conference on Signal Processing Proceedings (ICSP)
作者: Yingfeng Ou Xing Yang Jian Zhang Caiqing Jian Lihui Wang Engineering Research Center of Text Computing Ministry of Education Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province State Key Laboratory of Public Big Data College of Computer Science and Technology Guizhou University Guiyang China
Few-shot learning based methods can address the reliance on large-scale labeled samples in current breast tumor segmentation. However, previous methods typically rely on a few support samples to extract abstract, coar... 详细信息
来源: 评论