咨询与建议

限定检索结果

文献类型

  • 9 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 13 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10 篇 工学
    • 7 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 4 篇 信息与通信工程
    • 4 篇 软件工程
    • 2 篇 控制科学与工程
    • 2 篇 网络空间安全
  • 3 篇 理学
    • 3 篇 数学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 生物学
  • 2 篇 管理学
    • 2 篇 图书情报与档案管...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 2 篇 distribution tra...
  • 1 篇 deep neural netw...
  • 1 篇 associative stor...
  • 1 篇 differential pri...
  • 1 篇 antibodies
  • 1 篇 structured query...
  • 1 篇 linear transform...

机构

  • 9 篇 department of st...
  • 6 篇 department of co...
  • 6 篇 center for found...
  • 5 篇 simons institute...
  • 2 篇 center for found...
  • 2 篇 center for found...
  • 2 篇 department of co...
  • 2 篇 center for found...
  • 2 篇 department of co...
  • 1 篇 ensemble ai ca 9...
  • 1 篇 maynooth interna...
  • 1 篇 department of co...
  • 1 篇 ensemble ai ca u...
  • 1 篇 center for found...
  • 1 篇 department of ma...
  • 1 篇 center for found...
  • 1 篇 simons institute...
  • 1 篇 department of ph...
  • 1 篇 school of mathem...
  • 1 篇 department of st...

作者

  • 11 篇 liu han
  • 11 篇 hu jerry yao-chi...
  • 6 篇 song zhao
  • 5 篇 wu weimin
  • 2 篇 jerry yao-chieh ...
  • 2 篇 liu erzhi
  • 2 篇 wu dennis
  • 2 篇 han liu
  • 1 篇 zhao song
  • 1 篇 wen yibo
  • 1 篇 gilani ammar
  • 1 篇 zhuoru li
  • 1 篇 zhang lichen
  • 1 篇 chen minshuo
  • 1 篇 xu chenwei
  • 1 篇 dennis wu
  • 1 篇 lee yi-chen
  • 1 篇 su maojiang
  • 1 篇 weimin wu
  • 1 篇 wang wei-po

语言

  • 9 篇 其他
  • 4 篇 英文
检索条件"机构=Center for Foundation Models and Generative AI and Department of Computer Science"
13 条 记 录,以下是11-20 订阅
排序:
In-Context Deep Learning via Transformer models
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Weimin Su, Maojiang Hu, Jerry Yao-Chieh Song, Zhao Liu, Han Center for Foundation Models and Generative AI Northwestern University EvanstonIL60208 United States Department of Computer Science Northwestern University EvanstonIL60208 United States Simons Institute for the Theory of Computing UC Berkeley BerkeleyCA94720 United States Department of Statistics and Data Science Northwestern University EvanstonIL60208 United States
We investigate the transformer’s capability to simulate the training process of deep models via in-context learning (ICL), i.e., in-context deep learning. Our key contribution is providing a positive example of using... 详细信息
来源: 评论
On Statistical Rates of Conditional Diffusion Transformers: Approximation, Estimation and Minimax Optimality
arXiv
收藏 引用
arXiv 2024年
作者: Hu, Jerry Yao-Chieh Wu, Weimin Lee, Yi-Chen Huang, Yu-Chao Chen, Minshuo Liu, Han Center for Foundation Models and Generative AI Northwestern University EvanstonIL60208 United States Department of Computer Science Northwestern University EvanstonIL60208 United States Department of Physics National Taiwan University Taipei106319 Taiwan Physics Division National Center for Theoretical Sciences Taipei106319 Taiwan Department of Industrial Engineering & Management Sciences Northwestern University EvanstonIL60208 United States Department of Statistics and Data Science Northwestern University EvanstonIL60208 United States
We investigate the approximation and estimation rates of conditional diffusion transformers (DiTs) with classifier-free guidance. We present a comprehensive analysis for "in-context" conditional DiTs under f...
来源: 评论
Fundamental Limits of Prompt Tuning Transformers: Universality, Capacity and Efficiency
arXiv
收藏 引用
arXiv 2024年
作者: Hu, Jerry Yao-Chieh Wang, Wei-Po Gilani, Ammar Li, Chenyang Song, Zhao Liu, Han Center for Foundation Models and Generative AI Northwestern University EvanstonIL60208 United States Department of Computer Science Northwestern University EvanstonIL60208 United States Department of Physics National Taiwan University Taipei10617 Taiwan Maynooth International School of Engineering Fuzhou University Fuzhou350108 China Simons Institute for the Theory of Computing UC Berkeley BerkeleyCA94720 United States Department of Statistics and Data Science Northwestern University EvanstonIL60208 United States
We investigate the statistical and computational limits of prompt tuning for transformer-based foundation models. Our key contributions are prompt tuning on single-head transformers with only a single self-attention l... 详细信息
来源: 评论