咨询与建议

限定检索结果

文献类型

  • 15 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 23 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10 篇 理学
    • 9 篇 数学
    • 2 篇 化学
    • 1 篇 物理学
  • 8 篇 工学
    • 4 篇 计算机科学与技术...
    • 3 篇 软件工程
    • 2 篇 机械工程
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 建筑学
    • 1 篇 测绘科学与技术
    • 1 篇 轻工技术与工程
  • 1 篇 管理学
    • 1 篇 图书情报与档案管...

主题

  • 6 篇 computer graphic...
  • 5 篇 computer science
  • 3 篇 application soft...
  • 3 篇 mathematics
  • 2 篇 rendering (compu...
  • 2 篇 lattice animals
  • 2 篇 polyominoes
  • 2 篇 solid modeling
  • 2 篇 machinery
  • 1 篇 progressive comp...
  • 1 篇 crystallography
  • 1 篇 euclidean distan...
  • 1 篇 finite cell meth...
  • 1 篇 left atrial volu...
  • 1 篇 biology
  • 1 篇 approximation al...
  • 1 篇 left atrial
  • 1 篇 multiresolution ...
  • 1 篇 information reso...
  • 1 篇 concurrent compu...

机构

  • 2 篇 chair of computa...
  • 2 篇 computer science...
  • 2 篇 department of ma...
  • 2 篇 center of graphi...
  • 2 篇 center for graph...
  • 2 篇 center for graph...
  • 2 篇 center for graph...
  • 2 篇 institute for ad...
  • 2 篇 mentor graphics ...
  • 2 篇 chair for comput...
  • 2 篇 dept. of mathema...
  • 1 篇 dept. of informa...
  • 1 篇 center for graph...
  • 1 篇 center of graphi...
  • 1 篇 synopsys inc 154...
  • 1 篇 center for graph...
  • 1 篇 computer graphic...
  • 1 篇 computer science...
  • 1 篇 center for algor...
  • 1 篇 depts. of mathem...

作者

  • 7 篇 barequet gill
  • 3 篇 craig gotsman
  • 3 篇 gill barequet
  • 3 篇 c. gotsman
  • 3 篇 leonidas j. guib...
  • 2 篇 vyatkina kira
  • 2 篇 a. bogomjakov
  • 2 篇 rank ernst
  • 2 篇 john hershberger
  • 2 篇 pankaj k. agarwa...
  • 2 篇 korshunova nina
  • 2 篇 wassermann benja...
  • 2 篇 kollmannsberger ...
  • 2 篇 jeff erickson
  • 2 篇 julien basch
  • 2 篇 elber gershon
  • 2 篇 kira vyatkina
  • 1 篇 amit bermano
  • 1 篇 li zhang
  • 1 篇 guibas leonidas ...

语言

  • 23 篇 英文
检索条件"机构=Center for Graphics and Geometric Computing"
23 条 记 录,以下是11-20 订阅
排序:
Formulae and Growth Rates of High-Dimensional Polycubes
收藏 引用
Electronic Notes in Discrete Mathematics 2009年 34卷 459-463页
作者: Barequet, Ronnie Barequet, Gill Rote, Günter Depts. of Mathematics and Computer Science Tel Aviv University Tel Aviv 69978 Israel Center for Graphics and Geometric Computing Dept. of Computer Science The Technion-Israel Inst. of Technology Haifa 32000 Israel Institut für Informatik Freie Universität Berlin D-14195 Berlin Takustraße 9 Germany
A d-dimensional polycube is a facet-connected set of cubes in d dimensions. Fixed polycubes are considered distinct if they differ in shape or orientation. A proper d-D polycube spans all d dimensions. In this paper w... 详细信息
来源: 评论
Improved Upper Bounds on the Growth Constants of Polyominoes and Polycubes
arXiv
收藏 引用
arXiv 2019年
作者: Barequet, Gill Shalah, Mira Center for Graphics Geometric Computing Computer Science Department Technion—Israel Institute of Technology Haifa3200003 Israel Computer Science Department Stanford University CA United States
A d-dimensional polycube is a facet-connected set of cells (cubes) on the d-dimensional cubical lattice Zd. Let Ad(n) denote the number of d-dimensional polycubes (distinct up to translations) with n cubes, and λd de... 详细信息
来源: 评论
Kinetic binary space partitions for intersecting segments and disjoint triangles  98
Kinetic binary space partitions for intersecting segments an...
收藏 引用
Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms
作者: Pankaj K. Agarwal Jeff Erickson Leonidas J. Guibas Center for Geometric Computing Computer Science Department Duke University Box 90129 Durham NC Computer Graphics Laboratory Computer Science Department Stanford University Stanford CA
来源: 评论
On Voronoi Diagrams for Lines in the Plane
On Voronoi Diagrams for Lines in the Plane
收藏 引用
International Conference on Computational Science and its Applications (ICCSA)
作者: Gill Barequet Kira Vyatkina Center of Graphics and Geometric Computing Department of Computer Science Technion-Israel Institute of Technology Haifa Israel Department of Mathematics and Mechanics Saint Petersburg State University Saint Petersburg Russia
We describe a method based on the wavefront propagation, which computes a multiplicatively weighted Voronoi diagram for a set L of n lines in the plane in O(n 2 log n) time and O(n 2 ) space. In the process, we deriv... 详细信息
来源: 评论
Drawing graphs with large vertices and thick edges
收藏 引用
8th International Workshop on Algorithms and Data Structures, WADS 2003
作者: Barequet, Gill Goodrich, Michael T. Riley, Chris Center for Graphics and Geometric Computing Dept. of Computer Science The Technion-Israel Institute of Technology Haifa32000 Israel Dept. of Information and Computer Science Univ. of California IrvineCA92697 United States Center for Algorithm Engineering Dept. of Computer Science Johns Hopkins University BaltimoreMD21218 United States
We consider the problem of representing size information in the edges and vertices of a planar graph. Such information can be used, for example, to depict a network of computers and information traveling through the n... 详细信息
来源: 评论
On 2-Site Voronoi Diagrams under Arithmetic Combinations of Point-to-Point Distances
On 2-Site Voronoi Diagrams under Arithmetic Combinations of ...
收藏 引用
International Symposium on Voronoi Diagrams in Science and Engineering (ISVD)
作者: Kira Vyatkina Gill Barequet Department of Mathematics and Mechanics Saint Petersburg State University Saint Petersburg Russia Center of Graphics and Geometric Computing Department of Computer Science Technion-Israel Institute of Technology Haifa Israel
We consider a generalization of Voronoi diagrams, recently introduced by Barequet et al., in which the distance is measured from a pair of sites to a point. An easy way to define such distance was proposed together wi... 详细信息
来源: 评论
Finite cell method for functionally graded materials based on V-models and homogenized microstructures
收藏 引用
Advanced Modeling and Simulation in Engineering Sciences 2020年 第1期7卷 1-33页
作者: Wassermann, Benjamin Korshunova, Nina Kollmannsberger, Stefan Rank, Ernst Elber, Gershon Chair for Computation in Engineering Technical University of Munich Arcisstr. 21 München 80333 Germany Chair of Computational Modeling and Simulation Technical University of Munich Arcisstr. 21 München 80333 Germany Institute for Advanced Study Technical University of Munich Lichtenbergstr. 2a Garching 85748 Germany Center for Graphics and Geometric Computing Technion Israel Institute of Technology Haifa 3200003 Israel
This paper proposes an extension of the finite cell method (FCM) to V-rep models, a novel geometric framework for volumetric representations. This combination of an embedded domain approach (FCM) and a new modeling fr... 详细信息
来源: 评论
Kinetic collision detection between two simple polygons  99
Kinetic collision detection between two simple polygons
收藏 引用
Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms
作者: Julien Basch Jeff Erickson Leonidas J. Guibas John Hershberger Li Zhang Computer Science Department Stanford University Stanford CA and Center for Geometric Computing Department of Computer Science Duke University Durham NC Center for Geometric Computing Department of Computer Science Duke University Durham NC and Department of Computer Science University of Illinois Urbana IL Computer Science Department Stanford University Stanford CA Mentor Graphics Corp. 8005 SW Boeckman Road Wilsonville OR
来源: 评论
computing the penetration depth of two convex polytopes in 3d  7th
收藏 引用
7th Scandinavian Workshop on Algorithm Theory, SWAT 2000
作者: Agarwal, Pankaj K. Guibas, Leonidas J. Har-Peled, Sariel Rabinovitch, Alexander Sharir, Micha Center for Geometric Computing Department of Computer Science Duke University Box 90129 DurhamNC27708-0129 United States Computer Graphics Laboratory Computer Science Department Stanford University StanfordCA94305 United States Synopsys Inc 154 Crane Meadow Rd Suite 300 MarlboroMA01752 United States School of Mathematical Sciences Tel Aviv University Tel Aviv69978 Israel Courant Institute of Mathematical Sciences New York University NY10012 United States
Let A and B be two convex polytopes in R3 with m and n facets, respectively. The penetration depth of A and B, denoted as π(A, B), is the minimum distance by which A has to be translated so that A and B do not inters... 详细信息
来源: 评论
Single breathhold, three-dimensional measurement of left atrial volume and function using sparse CINE CMR imaging with iterative reconstruction
收藏 引用
Journal of Cardiovascular Magnetic Resonance 2015年 第SUPPL 1期17卷 Q35-Q35页
作者: Pierre Monney Orestis Vardoulis Davide Piccini Amit Bermano Amir Vaxman Craig Gotsman Janine Schwitter Michael O Zenge Michaela Schmidt Mariappan S Nadar Matthias Stuber Nikolaos Stergiopulos Juerg Schwitter Center for Cardiac Magnetic Resonance Cardiology University Hospital Lausanne (CHUV) Lausanne Switzerland Laboratory of Hemodynamics and Cardiovascular Technology Swiss Federal Institute of Technology Lausanne Switzerland Center for Biomedical Imaging (CIBM) University of Lausanne Lausanne Switzerland Advanced Clinical Imaging Technology Siemens Healthcare Lausanne Switzerland Center for Graphics and Geometric Computing Technion Haifa Israel Geometric Modelling and Industrial Geometry Vienna University of Technology Vienna Austria University of Fribourg Fribourg Switzerland Healthcare sector Siemens AG Erlangen Germany Imaging and Computer Vision Siemens Corporation Princeton NJ USA Radiology University Hospital Lausanne Lausanne Switzerland
来源: 评论