咨询与建议

限定检索结果

文献类型

  • 860 篇 期刊文献
  • 445 篇 会议
  • 1 册 图书

馆藏范围

  • 1,306 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 883 篇 工学
    • 423 篇 计算机科学与技术...
    • 365 篇 软件工程
    • 145 篇 控制科学与工程
    • 137 篇 信息与通信工程
    • 120 篇 化学工程与技术
    • 109 篇 生物工程
    • 107 篇 生物医学工程(可授...
    • 103 篇 机械工程
    • 97 篇 电气工程
    • 94 篇 电子科学与技术(可...
    • 85 篇 光学工程
    • 69 篇 材料科学与工程(可...
    • 56 篇 仪器科学与技术
    • 41 篇 动力工程及工程热...
    • 35 篇 环境科学与工程(可...
    • 31 篇 力学(可授工学、理...
  • 590 篇 理学
    • 216 篇 物理学
    • 208 篇 数学
    • 156 篇 生物学
    • 87 篇 化学
    • 87 篇 统计学(可授理学、...
    • 47 篇 系统科学
    • 39 篇 大气科学
  • 168 篇 管理学
    • 92 篇 管理科学与工程(可...
    • 71 篇 图书情报与档案管...
    • 41 篇 工商管理
  • 138 篇 医学
    • 115 篇 临床医学
    • 74 篇 基础医学(可授医学...
    • 47 篇 药学(可授医学、理...
    • 41 篇 公共卫生与预防医...
  • 33 篇 农学
  • 24 篇 法学
  • 16 篇 经济学
  • 16 篇 教育学
  • 7 篇 军事学
  • 2 篇 文学
  • 2 篇 艺术学
  • 1 篇 历史学

主题

  • 23 篇 deep learning
  • 23 篇 machine learning
  • 22 篇 training
  • 18 篇 feature extracti...
  • 17 篇 quantum cryptogr...
  • 16 篇 data models
  • 14 篇 graph neural net...
  • 14 篇 computational mo...
  • 13 篇 semantics
  • 13 篇 accuracy
  • 12 篇 reinforcement le...
  • 11 篇 generative adver...
  • 10 篇 task analysis
  • 10 篇 big data
  • 10 篇 image segmentati...
  • 10 篇 synchronization
  • 10 篇 robustness
  • 9 篇 students
  • 9 篇 artificial intel...
  • 8 篇 covid-19

机构

  • 97 篇 beijing advanced...
  • 93 篇 school of automa...
  • 71 篇 beijing advanced...
  • 43 篇 school of comput...
  • 27 篇 school of artifi...
  • 25 篇 university of ch...
  • 22 篇 beijing advanced...
  • 22 篇 beijing advanced...
  • 21 篇 data communicati...
  • 20 篇 national materia...
  • 20 篇 state key labora...
  • 15 篇 control engineer...
  • 15 篇 beihang universi...
  • 15 篇 state key labora...
  • 15 篇 beijing advanced...
  • 13 篇 department of co...
  • 13 篇 jinan institute ...
  • 12 篇 innovation cente...
  • 12 篇 state key labora...
  • 12 篇 shenzhen institu...

作者

  • 30 篇 wang shaoping
  • 27 篇 peng hao
  • 26 篇 li jianxin
  • 22 篇 qinglei hu
  • 19 篇 xiwang dong
  • 18 篇 qingdong li
  • 17 篇 zhang ren
  • 16 篇 wang xingjian
  • 14 篇 chien ting-ying
  • 13 篇 zhao weisheng
  • 13 篇 yu philip s.
  • 12 篇 yu liang-chih
  • 12 篇 dvir amit
  • 12 篇 wang xiang-bin
  • 12 篇 dawei zhang
  • 12 篇 yu zong-wen
  • 12 篇 jie tian
  • 12 篇 hajaj chen
  • 11 篇 xiaogang li
  • 11 篇 jiang cong

语言

  • 1,199 篇 英文
  • 69 篇 其他
  • 39 篇 中文
  • 2 篇 日文
检索条件"机构=Center for Innovation in Data Engineering and Science"
1306 条 记 录,以下是311-320 订阅
排序:
CLDG: Contrastive Learning on Dynamic Graphs
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Yiming Shi, Bin Ma, Teng Dong, Bo Zhou, Haoyi Zheng, Qinghua Department of Computer Science and Technology Xi’an Jiaotong University China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi’an Jiaotong University China Department of Distance Education Xi’an Jiaotong University China School of Software Beihang University China Advanced Innovation Center for Big Data and Brain Computing Beihang University China
The graph with complex annotations is the most potent data type, whose constantly evolving motivates further exploration of the unsupervised dynamic graph representation. One of the representative paradigms is graph c... 详细信息
来源: 评论
Integrated Gradients Demystified: An MRI Case Study on Aβ-T Protein Localization
Integrated Gradients Demystified: An MRI Case Study on Aβ-T...
收藏 引用
Metrology for Extended Reality, Artificial Intelligence and Neural engineering (MetroXRAINE), IEEE International Conference on
作者: Giorgio Dolci Cristian Morasso Federica Cruciani Lorenza Brusini Lorenzo Pini Vince D. Calhoun Ilaria Boscolo Galazzo Gloria Menegaz Dept. of Engineering for Innovation Medicine University of Verona Verona Italy Dept. of Computer Science University of Verona Verona Italy Padua Neuroscience Center University of Padua Padua Italy Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta GA USA
Explainability in Artificial Intelligence is gaining increasing importance, especially in critical fields. In biomedical applications, attribution maps are particularly relevant for their inherent spatial localization... 详细信息
来源: 评论
A comparative study on shock compression and spall damage of three typical Cr–Ni stainless steels
收藏 引用
Materials Today Communications 2025年 46卷
作者: Lin, Z.H. Xu, J. Guo, S.H. Lu, L. Li, C. Liang, Xiangxiang Zhao, H.Y. Zhang, N.B. Cai, Y. Luo, S.N. Key Laboratory of Advanced Technologies of Materials Ministry of Education and Dynamic Materials Data Science Center Southwest Jiaotong University Chengdu Sichuan China The Peac Institute of Multiscale Sciences Chengdu Sichuan China Extreme Material Dynamics Technology Laboratory Chengdu Sichuan China School of Materials Science and Engineering Taiyuan University of Science and Technology Taiyuan Shanxi China Leshan Digital Intelligence and Innovation Institute Leshan Sichuan China
The shock Hugoniots, dynamic yield strength and spall damage of three typical Cr–Ni stainless steels (SS316L, SS304 and SS2025) are investigated via plate impact experiments. Free-surface velocity profiles are captur... 详细信息
来源: 评论
Mathematical Simulation of Linear Ubiquitination in T Cell Receptor-Mediated NF-κB Activation Pathway
Mathematical Simulation of Linear Ubiquitination in T Cell R...
收藏 引用
International Symposium on Fusion of Mathematics and Biology, 2020
作者: Oikawa, Daisuke Hatanaka, Naoya Suzuki, Takashi Tokunaga, Fuminori Department of Pathobiochemistry Graduate School of Medicine Osaka City University Osaka Japan Division of Mathematical Science Department of Systems Innovation Graduate School of Engineering Science Osaka University Toyonaka Japan Center for Mathematical Modeling and Data Science Osaka University Toyonaka Japan
The linear ubiquitin chain assembly complex (LUBAC), composed of the HOIP, HOIL-1L, and SHARPIN subunits, activates the canonical nuclear factor-κB (NF-κB) pathway through the Met1 (M1)-linked linear ubiquitination ... 详细信息
来源: 评论
Performance analysis for a degrading system with Markov model  32nd
Performance analysis for a degrading system with Markov mode...
收藏 引用
32nd European Safety and Reliability Conference, ESREL 2022
作者: Zhang, Aibo Wu, Zhiying Wang, Yukun Xie, Min Center for Intelligent Multidimensional Data Analysis Hong Kong Science Park Shatin Hong Kong Department of Advanced Design and Systems Engineering City University of Hong Kong Hong Kong Centre for Artificial Intelligence and Robotics Hong Kong Institute of Science and Innovation Chinese Academy of Sciences Hong Kong School of Economics and Management Tianjin Chengjian University Tianjin300384 China
Most mechanical engineering systems experience deterioration due to several practical factors such as aging, usage etc. This results in the degradation of its performance. Although the deterioration is continuous in n... 详细信息
来源: 评论
Enabling Intelligent Immersive Learning using Deep Learning-based Learner Confidence Estimation
Enabling Intelligent Immersive Learning using Deep Learning-...
收藏 引用
IEEE International Conference on Information Reuse and Integration (IRI)
作者: Mohammadreza Akbari Lor Shu-Ching Chen Mei-Ling Shyu Yudong Tao Shahin Vassigh School of Science and Engineering University of Missouri-Kansas City Kansas City MO USA Data Science and Analytics Innovation Center (dSAIC) University of Missouri-Kansas City Kansas City MO USA Department of Electrical and Computer Engineering University of Miami Coral Gables FL USA College of Communication Architecture and the Arts Florida International University Miami FL USA
In today’s world, augmented reality and virtual reality (AR/VR) technologies have become more accessible to the public than ever. This brings the possibility of immersive learning to the forefront of education for fu... 详细信息
来源: 评论
Multimodal speech recognition using EEG and audio signals: A novel approach for enhancing ASR systems
收藏 引用
Smart Health 2024年 32卷
作者: Das, Anarghya Soni, Puru Huang, Ming-Chun Lin, Feng Xu, Wenyao Department of Computer Science and Engineering University at Buffalo Buffalo 14261 United States Department of Data and Computational Science Duke Kunshan University Jiangsu 215316 China ZJU-Hangzhou Global Scientific and Technological Innovation Center School of Cyber Science and Technology Zhejiang University Zhejiang 310007 China
Speech recognition using EEG signals captured during covert (imagined) speech has garnered substantial interest in Brain–Computer Interface (BCI) research. While the concept holds promise, current implementations mus... 详细信息
来源: 评论
A New Kind of Singularly Degenerate Heteroclinic Cycle Revealed in a 3d Autonomous System
SSRN
收藏 引用
SSRN 2022年
作者: Su, Qifang Wang, Haijun Dong, Guili Pan, Jun Fan, Hongdan School of Electronics and Information Engineering School of Big Data Science Taizhou University Zhejiang Taizhou318000 China School of Innovation and Entrepreneurship Center of Engineering Training Zhejiang University of Science and Technology Hangzhou310023 China Department of Big Data Science School of Science Zhejiang University of Science and Technology Hangzhou310023 China
Being distinct from most known singularly degenerate heteroclinic cycles consisting of two different equilibria of a line or curve, or two parallel lines of semi-hyperbolic equilibria, a novel type of one that connect... 详细信息
来源: 评论
OCT Medical Image Recognition Based on UNet++
OCT Medical Image Recognition Based on UNet++
收藏 引用
Chinese Control Conference (CCC)
作者: YunFei Bao Shangjie Ren Wei Zhang Hebei University of Technology Tianjin China Control Engineering Technology Innovation Center of Hebei Province Hebei University of Technology Tianjin P. R. China Tianjin University Tianjin China School of Artificial Intelligent and Data Science Control Engineering Technology Innovation Center of Hebei Province Hebei University of Technology Tianjin P. R. China
In this paper, we propose an improved UNet++ medical image segmentation method for coronary vascular OCT medical image detection to address the problem of large recognition errors arising from small targets and the li...
来源: 评论
Detection of the Anaerobic Threshold from Cardiopulmonary Exercise Test data with EO-Attention-LSTM
Detection of the Anaerobic Threshold from Cardiopulmonary Ex...
收藏 引用
Chinese Control Conference (CCC)
作者: Xin Guo Zhaoxin Lun Qitong Chu School of Artificial Intelligence and Data Science Hebei University of Technology Tianjin China Qinhuangdao Research Institute National Research Center for Rehabilitation Technical Aids Qinhuangdao China Control Engineering Technology Innovation Center of Hebei Province Hebei University of Technology Tianjin China
The physiological indicators at the anaerobic threshold play an essential role in guiding scientific exercise. The gold standard methodology for detecting the anaerobic threshold is expert visual inspection, but its e...
来源: 评论