咨询与建议

限定检索结果

文献类型

  • 62 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 68 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 57 篇 工学
    • 42 篇 计算机科学与技术...
    • 32 篇 软件工程
    • 10 篇 生物工程
    • 9 篇 控制科学与工程
    • 6 篇 化学工程与技术
    • 5 篇 信息与通信工程
    • 2 篇 电气工程
    • 2 篇 生物医学工程(可授...
    • 2 篇 安全科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
  • 47 篇 理学
    • 39 篇 数学
    • 14 篇 统计学(可授理学、...
    • 13 篇 系统科学
    • 10 篇 生物学
    • 7 篇 化学
    • 2 篇 地球物理学
    • 1 篇 物理学
  • 13 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 6 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 药学(可授医学、理...

主题

  • 4 篇 tensors
  • 3 篇 deep learning
  • 3 篇 spheres
  • 3 篇 machine learning
  • 2 篇 regression analy...
  • 2 篇 deep neural netw...
  • 2 篇 recommender syst...
  • 2 篇 network topology
  • 2 篇 decentralized al...
  • 2 篇 iterative method...
  • 2 篇 learning algorit...
  • 2 篇 decision trees
  • 2 篇 feature extracti...
  • 2 篇 stochastic syste...
  • 1 篇 hessian approxim...
  • 1 篇 chemical activat...
  • 1 篇 computational co...
  • 1 篇 directed network
  • 1 篇 co-clustering
  • 1 篇 stopping rule

机构

  • 22 篇 center for intel...
  • 13 篇 center for intel...
  • 6 篇 sgit ai lab stat...
  • 5 篇 center of intell...
  • 5 篇 center of intell...
  • 4 篇 college of compu...
  • 4 篇 center for moder...
  • 4 篇 school of data s...
  • 4 篇 state key labora...
  • 3 篇 international bu...
  • 3 篇 center for intel...
  • 3 篇 center for intel...
  • 3 篇 school of mathem...
  • 2 篇 department of ma...
  • 2 篇 department of co...
  • 2 篇 naveen jindal sc...
  • 2 篇 school of comput...
  • 2 篇 school of manage...
  • 2 篇 school of statis...
  • 2 篇 center for intel...

作者

  • 27 篇 lin shao-bo
  • 20 篇 wang yao
  • 16 篇 chang xiangyu
  • 11 篇 zhou ding-xuan
  • 8 篇 ye haishan
  • 8 篇 wang di
  • 7 篇 tang shaojie
  • 6 篇 liao xiuwu
  • 5 篇 haishan ye
  • 5 篇 han zhi
  • 4 篇 dai guang
  • 4 篇 yi qianxin
  • 4 篇 zhang hai
  • 4 篇 guo xiao
  • 4 篇 wang kaidong
  • 4 篇 liu jiapeng
  • 4 篇 di hao
  • 4 篇 tsang ivor w.
  • 3 篇 gao shanxing
  • 3 篇 kadziński milosz

语言

  • 63 篇 英文
  • 5 篇 其他
检索条件"机构=Center for Intelligent Decision-Making and Machine Learning"
68 条 记 录,以下是11-20 订阅
排序:
Efficient Fraud Detection Using Deep Boosting decision Trees
arXiv
收藏 引用
arXiv 2023年
作者: Xu, Biao Wang, Yao Liao, Xiuwu Wang, Kaidong School of Management Center of Intelligent Decision Making and Machine Learning Xi’an Jiaotong University Shanxi Xi’an710049 China
Fraud detection is to identify, monitor, and prevent potentially fraudulent activities from complex data. The recent development and success in AI, especially machine learning, provides a new data-driven way to deal w... 详细信息
来源: 评论
Uncertainty Quantification of Data Shapley via Statistical Inference
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Mengmeng Liu, Zhihong Li, Xiang Jia, Ruoxi Chang, Xiangyu Center for Intelligent Decision-Making and Machine Learning School of Management Xi’an Jiaotong University China University of Pennsylvania United States Virginia Tech Blacksburg United States
As data plays an increasingly pivotal role in decision-making, the emergence of data markets underscores the growing importance of data valuation. Within the machine learning landscape, Data Shapley stands out as a wi... 详细信息
来源: 评论
Snap-Shot Decentralized Stochastic Gradient Tracking Methods
arXiv
收藏 引用
arXiv 2022年
作者: Ye, Haishan Chang, Xiangyu Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China
In decentralized optimization, m agents form a network and only communicate with their neighbors, which gives advantages in data ownership, privacy, and scalability. At the same time, decentralized stochastic gradient... 详细信息
来源: 评论
Towards Popularity-Aware Recommendation: A Multi-Behavior Enhanced Framework with Orthogonality Constraint
arXiv
收藏 引用
arXiv 2024年
作者: Han, Yishan Xu, Biao Wang, Yao Gao, Shanxing Center for Intelligent Decision-Making and Machine Learning School of Management Xi’an Jiaotong University Shaanxi Xi’an China Department of Marketing School of Management Xi’an Jiaotong University Shaanxi Xi’an China
Top-K recommendation involves inferring latent user preferences and generating personalized recommendations accordingly, which is now ubiquitous in various decision systems. Nonetheless, recommender systems usually su... 详细信息
来源: 评论
Adaptive Distributed Kernel Ridge Regression: A Feasible Distributed learning Scheme for Data Silos
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Di Liu, Xiaotong Lin, Shao-Bo Zhou, Ding-Xuan Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'An China School of Mathematics and Statistics University of Sydney Sydney Australia
Data silos, mainly caused by privacy and interoperability, significantly constrain collaborations among different organizations with similar data for the same purpose. Distributed learning based on divide-and-conquer ... 详细信息
来源: 评论
Component-based Sketching for Deep ReLU Nets
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Di Lin, Shao-Bo Meng, Deyu Cao, Feilong Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China School of Mathematics and Statistics Xi'an Jiaotong University China School of Science China Jiliang University China
Deep learning has made profound impacts in the domains of data mining and AI, distinguished by the groundbreaking achievements in numerous real-world applications and the innovative algorithm design philosophy. Howeve... 详细信息
来源: 评论
Preference Construction: A Bayesian Interactive Preference Elicitation Framework Based on Monte Carlo Tree Search
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Yan Liu, Jiapeng Kadziński, Milosz Liao, Xiuwu Center for Intelligent Decision-making and Machine Learning School of Management Xi’an Jiaotong University Shaanxi Xi’an710049 China Faculty of Computing and Telecommunications Poznan University of Technology Piotrowo 2 Poznań60-965 Poland
We present a novel preference learning framework to capture participant preferences efficiently within limited interaction rounds. It involves three main contributions. First, we develop a variational Bayesian approac... 详细信息
来源: 评论
Robust Tensor Completion With Side Information
收藏 引用
IEEE Transactions on Knowledge and Data Engineering 2025年
作者: Wang, Yao Yi, Qianxin Yang, Yiyang Gao, Shanxing Tang, Shaojie Wang, Di Xi'an Jiaotong University Center for Intelligent Decision-making and Machine Learning School of Management Xi'an China Xi'an Jiaotong University Department of Marketing School of Management Xi'an China University at Buffalo Department of Management Science and Systems BuffaloNY United States
Although robust tensor completion has been extensively studied, the effect of incorporating side information has not been explored. In this article, we fill this gap by developing a novel high-order robust tensor comp... 详细信息
来源: 评论
Randomized spectral co-clustering for large-scale directed networks
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2023年 第1期24卷 18206-18273页
作者: Xiao Guo Yixuan Qiu Hai Zhang Xiangyu Chang Center for Modern Statistics School of Mathematics Northwest University Xi'an China School of Statistics and Management Shanghai University of Finance and Economics Shanghai China Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'an China
Directed networks are broadly used to represent asymmetric relationships among units. Co-clustering aims to cluster the senders and receivers of directed networks simultaneously. In particular, the well-known spectral... 详细信息
来源: 评论
SKETCHING WITH SPHERICAL DESIGNS FOR NOISY DATA FITTING ON SPHERES∗
arXiv
收藏 引用
arXiv 2023年
作者: Lin, Shao-Bo Wang, Di Zhou, Ding-Xuan Center for Intelligent Decision-Making and Machine Learning School of Management Xi’an Jiaotong University Xi’an710049 China School of Mathematics and Statistics University of Sydney SydneyNSW2006 Australia
This paper proposes a sketching strategy based on spherical designs, which is applied to the classical spherical basis function approach for massive spherical data fitting. We conduct theoretical analysis and numerica... 详细信息
来源: 评论