咨询与建议

限定检索结果

文献类型

  • 62 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 68 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 42 篇 计算机科学与技术...
    • 32 篇 软件工程
    • 10 篇 生物工程
    • 9 篇 控制科学与工程
    • 6 篇 化学工程与技术
    • 5 篇 信息与通信工程
    • 2 篇 电气工程
    • 2 篇 生物医学工程(可授...
    • 2 篇 安全科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
  • 48 篇 理学
    • 40 篇 数学
    • 15 篇 统计学(可授理学、...
    • 13 篇 系统科学
    • 10 篇 生物学
    • 7 篇 化学
    • 2 篇 地球物理学
    • 1 篇 物理学
  • 12 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 5 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 药学(可授医学、理...

主题

  • 4 篇 deep learning
  • 4 篇 tensors
  • 3 篇 spheres
  • 3 篇 machine learning
  • 2 篇 regression analy...
  • 2 篇 deep neural netw...
  • 2 篇 recommender syst...
  • 2 篇 network topology
  • 2 篇 decentralized al...
  • 2 篇 iterative method...
  • 2 篇 learning algorit...
  • 2 篇 decision trees
  • 2 篇 feature extracti...
  • 2 篇 stochastic syste...
  • 1 篇 hessian approxim...
  • 1 篇 chemical activat...
  • 1 篇 approximation al...
  • 1 篇 computational co...
  • 1 篇 directed network
  • 1 篇 co-clustering

机构

  • 22 篇 center for intel...
  • 12 篇 center for intel...
  • 6 篇 sgit ai lab stat...
  • 5 篇 center of intell...
  • 5 篇 center of intell...
  • 4 篇 college of compu...
  • 4 篇 center for moder...
  • 4 篇 school of data s...
  • 4 篇 state key labora...
  • 3 篇 international bu...
  • 3 篇 center for intel...
  • 3 篇 center for intel...
  • 3 篇 school of mathem...
  • 2 篇 department of ma...
  • 2 篇 department of co...
  • 2 篇 naveen jindal sc...
  • 2 篇 school of comput...
  • 2 篇 school of statis...
  • 2 篇 center for intel...
  • 2 篇 the center for i...

作者

  • 28 篇 lin shao-bo
  • 21 篇 wang yao
  • 16 篇 chang xiangyu
  • 12 篇 zhou ding-xuan
  • 8 篇 ye haishan
  • 8 篇 wang di
  • 7 篇 tang shaojie
  • 5 篇 haishan ye
  • 5 篇 liao xiuwu
  • 5 篇 han zhi
  • 4 篇 dai guang
  • 4 篇 yi qianxin
  • 4 篇 zhang hai
  • 4 篇 guo xiao
  • 4 篇 wang kaidong
  • 4 篇 di hao
  • 4 篇 tsang ivor w.
  • 3 篇 gao shanxing
  • 3 篇 liu xiaotong
  • 3 篇 luo luo

语言

  • 64 篇 英文
  • 4 篇 其他
检索条件"机构=Center for Intelligent Decision-making and Machine Learning"
68 条 记 录,以下是1-10 订阅
排序:
Generalization Performance of Empirical Risk Minimization on Over-Parameterized Deep ReLU Nets
收藏 引用
IEEE Transactions on Information Theory 2025年 第3期71卷 1978-1993页
作者: Lin, Shao-Bo Wang, Yao Zhou, Ding-Xuan Xi'an Jiaotong University Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an710049 China The University of Sydney School of Mathematics and Statistics SydneyNSW2006 Australia
In this paper, we study the generalization performance of global minima of empirical risk minimization (ERM) on over-parameterized deep ReLU nets. Using a novel deepening scheme for deep ReLU nets, we rigorously prove... 详细信息
来源: 评论
Preference Construction: A Bayesian Interactive Preference Elicitation Framework Based on Monte Carlo Tree Search
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Yan Liu, Jiapeng Kadziński, Milosz Liao, Xiuwu Center for Intelligent Decision-making and Machine Learning School of Management Xi’an Jiaotong University Shaanxi Xi’an710049 China Faculty of Computing and Telecommunications Poznan University of Technology Piotrowo 2 Poznań60-965 Poland
We present a novel preference learning framework to capture participant preferences efficiently within limited interaction rounds. It involves three main contributions. First, we develop a variational Bayesian approac... 详细信息
来源: 评论
Feature Qualification by Deep Nets: A Constructive Approach
arXiv
收藏 引用
arXiv 2025年
作者: Cao, Feilong Lin, Shao-Bo School of Mathematics Zhejiang Normal University Jinhua321014 China Institute of Mathematics and Cross-disciplinary Science Zhejiang Normal University Hangzhou310012 China Center for Intelligent Decision-Making and Machine Learning School of Management Xi’an Jiaotong University Xi’an710049 China
The great success of deep learning has stimulated avid research activities in verifying the power of depth in theory, a common consensus of which is that deep net are versatile in approximating and learning numerous f... 详细信息
来源: 评论
Efficient Over-parameterized Matrix Sensing from Noisy Measurements via Alternating Preconditioned Gradient Descent
arXiv
收藏 引用
arXiv 2025年
作者: Liu, Zhiyu Han, Zhi Tang, Yandong Zhang, Hai Tang, Shaojie Wang, Yao State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110016 China University of Chinese Academy of Sciences Beijing100049 China Department of Statistics Northwest University Xi’an710000 China Department of Management Science and Systems State University of New York Buffalo United States Center for Intelligent Decision-making and Machine Learning School of Management Xi’an Jiaotong University Xi’an710049 China
We consider the noisy matrix sensing problem in the over-parameterization setting, where the estimated rank r is larger than the true rank r★. Specifically, our main objective is to recover a matrix X★ ∈ Rn1×n... 详细信息
来源: 评论
Robust Tensor Completion With Side Information
收藏 引用
IEEE Transactions on Knowledge and Data Engineering 2025年
作者: Wang, Yao Yi, Qianxin Yang, Yiyang Gao, Shanxing Tang, Shaojie Wang, Di Xi'an Jiaotong University Center for Intelligent Decision-making and Machine Learning School of Management Xi'an China Xi'an Jiaotong University Department of Marketing School of Management Xi'an China University at Buffalo Department of Management Science and Systems BuffaloNY United States
Although robust tensor completion has been extensively studied, the effect of incorporating side information has not been explored. In this article, we fill this gap by developing a novel high-order robust tensor comp... 详细信息
来源: 评论
A Fast and Accurate Frequent Directions Algorithm for Low Rank Approximation via Block Krylov Iteration
A Fast and Accurate Frequent Directions Algorithm for Low Ra...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Qianxin Yi Chenhao Wang Xiuwu Liao Yao Wang Center for Intelligent Decision-making and Machine Learning Xi’an Jiaotong University China
It is known that frequent directions (FD) is a popular deterministic matrix sketching technique for low rank approximation. However, FD and its randomized variants usually meet high computational cost or computational...
来源: 评论
Can Gaussian Sketching Converge Faster on a Preconditioned Landscape?  41
Can Gaussian Sketching Converge Faster on a Preconditioned L...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Wang, Yilong Ye, Haishan Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China Singapore College of Computing and Data Science NTU Singapore
This paper focuses on the large-scale optimization which is very popular in the big data era. The gradient sketching is an important technique in the large-scale optimization. Specifically, the random coordinate desce... 详细信息
来源: 评论
Double Stochasticity Gazes Faster: Snap-Shot Decentralized Stochastic Gradient Tracking Methods  41
Double Stochasticity Gazes Faster: Snap-Shot Decentralized S...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Di, Hao Ye, Haishan Chang, Xiangyu Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China College of Computing and Data Science NTU Singapore Singapore
In decentralized optimization, m agents form a network and only communicate with their neighbors, which gives advantages in data ownership, privacy, and scalability. At the same time, decentralized stochastic gradient... 详细信息
来源: 评论
Snap-Shot Decentralized Stochastic Gradient Tracking Methods
arXiv
收藏 引用
arXiv 2022年
作者: Ye, Haishan Chang, Xiangyu Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China
In decentralized optimization, m agents form a network and only communicate with their neighbors, which gives advantages in data ownership, privacy, and scalability. At the same time, decentralized stochastic gradient... 详细信息
来源: 评论
Distributed learning with dependent samples
arXiv
收藏 引用
arXiv 2020年
作者: Sun, Zirui Lin, Shao-Bo The Center of Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China
This paper focuses on learning rate ansalysis of distributed kernel ridge regression (DKRR) for strong mixing sequences. Using a recently developed integral operator approach and a classical covariance inequality for ... 详细信息
来源: 评论