We present a sampling-based motion planner that improves the performance of the probabilistically optimal RRT* planning algorithm. Experiments demonstrate that our planner finds a fast initial path and decreases the c...
详细信息
We present a sampling-based motion planner that improves the performance of the probabilistically optimal RRT* planning algorithm. Experiments demonstrate that our planner finds a fast initial path and decreases the cost of this path iteratively. We identify and address the limitations of RRT* in high-dimensional configuration spaces. We introduce a sampling bias to facilitate and accelerate cost decrease in these spaces and a simple node-rejection criteria to increase efficiency. Finally, we incorporate an existing bi-directional approach to search which decreases the time to find an initial path. We analyze our planner on a simple 2D navigation problem in detail to show its properties and test it on a difficult 7D manipulation problem to show its effectiveness. Our results consistently demonstrate improved performance over RRT*.
What would humans be like if nature had invented the wheel? Golem Krang is a novel humanoid torso designed at Georgia Tech. The robot dynamically transforms from a .5 m static to a 1.5 m dynamic configuration. Our rob...
详细信息
What would humans be like if nature had invented the wheel? Golem Krang is a novel humanoid torso designed at Georgia Tech. The robot dynamically transforms from a .5 m static to a 1.5 m dynamic configuration. Our robot development has led to two advances in the design of platforms for mobility and manipulation: (1) A 2-DOF robot base that autonomously stands from horizontal rest; (2) A 4-DOF humanoid torso that adds a waist roll joint to replicate human torso folding and a yaw joint for spine rotation. The mobile torso also achieves autonomous standing in a constrained space while lifting a 40 kg payload. Golem validates our assertions by consistently achieving static-dynamic transformations. This paper describes the design of our mobile torso. It considers a number of factors including its suitability for human environments, mechanical simplicity and the ability to store potential and kinetic energy for handling heavy human and even super-human tasks.
This paper presents three effective manipulation strategies for wheeled, dynamically balancing robots with articulated links. By comparing these strategies through analysis, simulation and robot experiments, we show t...
详细信息
This paper presents three effective manipulation strategies for wheeled, dynamically balancing robots with articulated links. By comparing these strategies through analysis, simulation and robot experiments, we show that contact placement and body posture have a significant impact on the robot's ability to accelerate and displace environment objects. Given object geometry and friction parameters we determine the most effective methods for utilizing wheel torque to perform non-prehensile manipulation.
This paper describes the scientific vision and objectives of the FET Flagship candidate initiative Robot Companions for Citizens. Robot Companions will be a new generation of machines that will primarily help and assi...
详细信息
This paper describes the scientific vision and objectives of the FET Flagship candidate initiative Robot Companions for Citizens. Robot Companions will be a new generation of machines that will primarily help and assist elderly people in activities of daily living in their workplace, home and in society. They will be the ICT solution for a new sustainable welfare.
Stylized motion is prevalent in the field of Human- Robot Interaction (HRI). Robot designers typically hand craft or work with professional animators to design behaviors for a robot that will be communicative or life-...
详细信息
In this paper we describe the problem of visual place categorization (VPC) for mobile robotics, which involves predicting the semantic category of a place from image measurements acquired from an autonomous platform. ...
详细信息
In this paper we describe the problem of visual place categorization (VPC) for mobile robotics, which involves predicting the semantic category of a place from image measurements acquired from an autonomous platform. For example, a robot in an unfamiliar home environment should be able to recognize the functionality of the rooms it visits, such as kitchen, living room, etc. We describe an approach to VPC based on sequential processing of images acquired with a conventional video camera. We identify two key challenges: Dealing with non-characteristic views and integrating restricted-FOV imagery into a holistic prediction. We present a solution to VPC based upon a recently-developed visual feature known as CENTRIST (census transform histogram). We describe a new dataset for VPC which we have recently collected and are making publicly available. We believe this is the first significant, realistic dataset for the VPC problem. It contains the interiors of six different homes with ground truth labels. We use this dataset to validate our solution approach, achieving promising results.
The combination of a mobile platform and a manipulator, known as a mobile manipulator, provides a highly flexible system, which can be used in a wide range of applications, especially within the field of service robot...
详细信息
The combination of a mobile platform and a manipulator, known as a mobile manipulator, provides a highly flexible system, which can be used in a wide range of applications, especially within the field of service robotics. One of the challenges with mobile manipulators is the construction of control systems, enabling the robot to operate safely in potentially dynamic environments. In this paper we will present work in which a mobile manipulator is controlled using the dynamical systems approach. The method presented is a two level approach in which competitive dynamics are used both for the overall coordination of the mobile platform and the manipulator as well as the lower level fusion of obstacle avoidance and target acquisition behaviors.
We present results of successful telemanipulation of large, heavy objects by a humanoid robot. Using a single joystick the operator controls walking and whole body manipulation along arbitrary paths for up to ten minu...
详细信息
We present results of successful telemanipulation of large, heavy objects by a humanoid robot. Using a single joystick the operator controls walking and whole body manipulation along arbitrary paths for up to ten minutes of continuous execution. The robot grasps, walks, pushes, pulls, turns and re-grasps a 55 kg range of loads on casters. Our telemanipulation framework changes reference frames online to let the operator steer the robot in free walking, its hands in grasping and the object during mobile manipulation. In the case of manipulation, our system computes a robot motion that satisfies the commanded object path as well as the kinematic and dynamic constraints of the robot. Furthermore, we achieve increased robot stability by learning dynamic friction models of manipulated objects.
暂无评论