咨询与建议

限定检索结果

文献类型

  • 60 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 74 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 33 篇 工学
    • 20 篇 计算机科学与技术...
    • 19 篇 软件工程
    • 16 篇 信息与通信工程
    • 6 篇 生物工程
    • 4 篇 生物医学工程(可授...
    • 2 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
    • 2 篇 控制科学与工程
    • 1 篇 光学工程
    • 1 篇 电气工程
    • 1 篇 安全科学与工程
  • 27 篇 理学
    • 18 篇 物理学
    • 14 篇 数学
    • 9 篇 生物学
    • 8 篇 统计学(可授理学、...
    • 3 篇 系统科学
  • 9 篇 管理学
    • 5 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 3 篇 文学
    • 2 篇 新闻传播学
    • 1 篇 外国语言文学
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 口腔医学
    • 1 篇 公共卫生与预防医...
    • 1 篇 特种医学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 法学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学

主题

  • 13 篇 speech recogniti...
  • 8 篇 speech processin...
  • 7 篇 hidden markov mo...
  • 6 篇 natural language...
  • 6 篇 automatic speech...
  • 5 篇 speech
  • 4 篇 noise measuremen...
  • 4 篇 acoustics
  • 4 篇 decoding
  • 4 篇 training
  • 3 篇 support vector m...
  • 3 篇 lattices
  • 3 篇 training data
  • 3 篇 signal processin...
  • 3 篇 vocabulary
  • 3 篇 computational mo...
  • 2 篇 neurons
  • 2 篇 deep learning
  • 2 篇 computer aided l...
  • 2 篇 indexes

机构

  • 5 篇 center for langu...
  • 3 篇 department of el...
  • 3 篇 institute for la...
  • 3 篇 department of el...
  • 2 篇 department of sp...
  • 2 篇 school of electr...
  • 2 篇 department of ps...
  • 2 篇 center for langu...
  • 2 篇 center for langu...
  • 2 篇 department of el...
  • 2 篇 institute for la...
  • 2 篇 electrical engin...
  • 2 篇 computer enginee...
  • 2 篇 speech and langu...
  • 2 篇 center for langu...
  • 2 篇 human language t...
  • 2 篇 center for cogni...
  • 2 篇 center for langu...
  • 2 篇 center for langu...
  • 2 篇 institute for la...

作者

  • 7 篇 sanjeev khudanpu...
  • 6 篇 damianos karakos
  • 5 篇 byrne william
  • 4 篇 drosatos george
  • 4 篇 mounya elhilali
  • 4 篇 efraimidis pavlo...
  • 3 篇 g. cauwenberghs
  • 3 篇 gunawardana asel...
  • 3 篇 khudanpur sanjee...
  • 3 篇 dehak najim
  • 2 篇 sriram ganapathy
  • 2 篇 perifanis vasile...
  • 2 篇 feng siyuan
  • 2 篇 stamatelatos gio...
  • 2 篇 puyang xu
  • 2 篇 abavisani ali
  • 2 篇 kashani hamidrez...
  • 2 篇 scharenborg odet...
  • 2 篇 hermansky hynek
  • 2 篇 t.m. kamm

语言

  • 72 篇 英文
  • 2 篇 其他
检索条件"机构=Center for Language and Speech Processin Department of Electrical and Computer Engineering"
74 条 记 录,以下是51-60 订阅
排序:
Self-supervised discriminative training of statistical language models
Self-supervised discriminative training of statistical langu...
收藏 引用
IEEE Workshop on Automatic speech Recognition and Understanding
作者: Puyang Xu Damianos Karakos Sanjeev Khudanpur Department of Electrical and Computer Engineering Center for Language and Speech Processing USA Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD USA Johns Hopkins University Baltimore MD US
A novel self-supervised discriminative training method for estimating language models for automatic speech recognition (ASR) is proposed. Unlike traditional discriminative training methods that require transcribed spe... 详细信息
来源: 评论
Exploiting prosodic breaks in language modeling with random forests
Exploiting prosodic breaks in language modeling with random ...
收藏 引用
4th International Conference on speech Prosody 2008, SP 2008
作者: Su, Yi Jelinek, Frederick Center for Language and Speech Processing Department of Electrical and Computer Engineering The Johns Hopkins University Baltimore MD United States
We propose a novel method of exploiting prosodic breaks in language modeling for automatic speech recognition (ASR) based on the random forest language model (RFLM), which is a collection of randomized decision tree l... 详细信息
来源: 评论
Sequential system combination for machine translation of speech
Sequential system combination for machine translation of spe...
收藏 引用
IEEE Spoken language Technology Workshop
作者: Damianos Karakos Sanjeev Khudanpur Center for Language and Speech Processing and Department of Electrical and Computer Engineering Johns Hopkins University Baltimore MD USA
System combination is a technique which has been shown to yield significant gains in speech recognition and machine translation. Most combination schemes perform an alignment between different system outputs in order ... 详细信息
来源: 评论
Segmentation and alignment of parallel text for statistical machine translation
收藏 引用
Natural language engineering 2007年 第3期13卷 235-260页
作者: Deng, Yonggang Kumar, Shankar Byrne, William Center for Language and Speech Processing Department of Electrical and Computer Engineering The Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 United States Google Inc. 1600 Amphitheatre Parkway Mountain View CA 94043 United States Department of Engineering Cambridge University Trumpington Street Cambridge CB2 1PZ United Kingdom
We address the problem of extracting bilingual chunk pairs from parallel text to create training sets for statistical machine translation. We formulate the problem in terms of a stochastic generative process over text... 详细信息
来源: 评论
Finding a Needle in a Haystack
Finding a Needle in a Haystack
收藏 引用
Annual Conference on Information Sciences and Systems (CISS)
作者: Bruno Jedynak Damianos Karakos Department of Applied Mathematics Johns Hopkins University MD USA Center for Language and Speech Processing and Department of Electrical and Computer Engineering Johns Hopkins University Baltimore MD USA
Summary form only given. We study a simplified version of the problem of target detectability in the presence of clutter. The target (the needle) is a sample of size N from a discrete distribution p. The clutter (the ... 详细信息
来源: 评论
A weighted finite state transducer translation template model for statistical machine translation
收藏 引用
Natural language engineering 2006年 第1期12卷 35-75页
作者: Kumar, Shankar Deng, Yonggang Byrne, William Center for Language and Speech Processing Department of Electrical and Computer Engineering The Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 United States
We present a Weighted Finite State Transducer Translation Template Model for statistical machine translation. This is a source-channel model of translation inspired by the Alignment Template translation model. The mod... 详细信息
来源: 评论
Band-Independent Mask Estimation for Missing-Feature Reconstruction in the Presence of Unknown Background Noise
Band-Independent Mask Estimation for Missing-Feature Reconst...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Wooil Kim R.M. Stern Center for Robust Speech Systems Department of Electrical Eng. University of Technology Richardson TX USA Department of Electrical and Computer Engineering and Language Technologies Institute Carnegie Mellon University Pittsburgh PA USA
An effective mask estimation scheme for missing-feature reconstruction is described that achieves robust speech recognition in the presence of unknown noise. In previous work on Bayesian classification for mask estima... 详细信息
来源: 评论
Using random forests in the structured language model
Using random forests in the structured language model
收藏 引用
18th Annual Conference on Neural Information processing Systems, NIPS 2004
作者: Xu, Peng Jelinek, Frederick Department of Electrical and Computer Engineering Center for Language and Speech Processing Johns Hopkins University United States
In this paper, we explore the use of Random Forests (RFs) in the structured language model (SLM), which uses rich syntactic information in predicting the next word based on words already seen. The goal in this work is... 详细信息
来源: 评论
Robustness aspects of active learning for acoustic modeling  8
Robustness aspects of active learning for acoustic modeling
收藏 引用
8th International Conference on Spoken language processing, ICSLP 2004
作者: Kamm, Teresa M. Meyer, Gerard G.L. Center for Language and Speech Processing Department of Electrical and Computer Engineering Johns Hopkins University BaltimoreMD United States
We previously proposed [1] an iterative word-selective training method to cost-effectively utilize data preparation resources without compromising system performance. We continue this work and investigate the robustne... 详细信息
来源: 评论
Using random forests in the structured language model  04
Using random forests in the structured language model
收藏 引用
Proceedings of the 18th International Conference on Neural Information processing Systems
作者: Peng Xu Frederick Jelinek Center for Language and Speech Processing Department of Electrical and Computer Engineering The Johns Hopkins University
In this paper, we explore the use of Random Forests (RFs) in the structured language model (SLM), which uses rich syntactic information in predicting the next word based on words already seen. The goal in this work is...
来源: 评论