咨询与建议

限定检索结果

文献类型

  • 267 篇 会议
  • 155 篇 期刊文献

馆藏范围

  • 422 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 282 篇 工学
    • 184 篇 计算机科学与技术...
    • 164 篇 软件工程
    • 111 篇 信息与通信工程
    • 28 篇 生物工程
    • 27 篇 电子科学与技术(可...
    • 24 篇 电气工程
    • 23 篇 控制科学与工程
    • 21 篇 仪器科学与技术
    • 19 篇 化学工程与技术
    • 11 篇 机械工程
    • 8 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 5 篇 建筑学
    • 4 篇 土木工程
    • 3 篇 材料科学与工程(可...
  • 176 篇 理学
    • 137 篇 物理学
    • 56 篇 数学
    • 31 篇 生物学
    • 19 篇 化学
    • 16 篇 统计学(可授理学、...
    • 8 篇 系统科学
  • 44 篇 管理学
    • 37 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 11 篇 法学
    • 11 篇 社会学
  • 8 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 7 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 4 篇 教育学
    • 4 篇 教育学
  • 3 篇 农学
  • 2 篇 艺术学

主题

  • 59 篇 speech recogniti...
  • 52 篇 training
  • 33 篇 acoustics
  • 31 篇 speech
  • 20 篇 speech processin...
  • 19 篇 feature extracti...
  • 18 篇 hidden markov mo...
  • 18 篇 signal processin...
  • 16 篇 computational mo...
  • 15 篇 conferences
  • 14 篇 speech enhanceme...
  • 13 篇 predictive model...
  • 13 篇 decoding
  • 12 篇 machine translat...
  • 11 篇 speech synthesis
  • 10 篇 training data
  • 10 篇 neural networks
  • 10 篇 data models
  • 9 篇 transformers
  • 9 篇 self-supervised ...

机构

  • 71 篇 national enginee...
  • 51 篇 human language t...
  • 46 篇 center for langu...
  • 31 篇 human language t...
  • 21 篇 center for langu...
  • 21 篇 center for langu...
  • 13 篇 center for langu...
  • 11 篇 iflytek research
  • 10 篇 center for langu...
  • 9 篇 ict cluster sing...
  • 9 篇 human language t...
  • 8 篇 national enginee...
  • 8 篇 center for langu...
  • 8 篇 human language t...
  • 7 篇 center for langu...
  • 7 篇 human language t...
  • 7 篇 university of sc...
  • 7 篇 xiaomi corp.
  • 6 篇 university of sc...
  • 6 篇 state key labora...

作者

  • 49 篇 ling zhen-hua
  • 47 篇 khudanpur sanjee...
  • 35 篇 dehak najim
  • 32 篇 ai yang
  • 29 篇 sanjeev khudanpu...
  • 23 篇 zhen-hua ling
  • 23 篇 dredze mark
  • 19 篇 povey daniel
  • 19 篇 yang ai
  • 18 篇 villalba jesús
  • 18 篇 van durme benjam...
  • 18 篇 daniel povey
  • 17 篇 post matt
  • 16 篇 hermansky hynek
  • 16 篇 lu ye-xin
  • 15 篇 zelasko piotr
  • 14 篇 du hui-peng
  • 13 篇 raj desh
  • 13 篇 gu jia-chen
  • 13 篇 watanabe shinji

语言

  • 344 篇 英文
  • 78 篇 其他
  • 2 篇 中文
检索条件"机构=Center for Language and Speech Processing & Human Language Technology"
422 条 记 录,以下是111-120 订阅
排序:
Clever Hans Effect Found in Automatic Detection of Alzheimer’s Disease through speech
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Yin-Long Feng, Rui Yuan, Jiahong Ling, Zhen-Hua National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei China Interdisciplinary Research Center for Linguistic Sciences University of Science and Technology of China Hefei China
We uncover an underlying bias present in the audio recordings produced from the picture description task of the Pitt corpus, the largest publicly accessible database for Alzheimer’s Disease (AD) detection research. E... 详细信息
来源: 评论
Leveraging Prompt Learning and Pause Encoding for Alzheimer’s Disease Detection
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Yin-Long Feng, Rui Yuan, Jia-Hong Ling, Zhen-Hua National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei China Interdisciplinary Research Center for Linguistic Sciences University of Science and Technology of China Hefei China
Compared to other clinical screening techniques, speech-and-language-based automated Alzheimer’s disease (AD) detection methods are characterized by their non-invasiveness, cost-effectiveness, and convenience. Previo... 详细信息
来源: 评论
Stargan-vc Based Cross-Domain Data Augmentation for Speaker Verification
Stargan-vc Based Cross-Domain Data Augmentation for Speaker ...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Hang-Rui Hu Yan Song Jian-Tao Zhang Li-Rong Dai Ian McLoughlin Zhu Zhuo Yu Zhou Yu-Hong Li Hui Xue National Engineering Research Center for Speech and Language Information Processing University of Science and Technology of China Hefei China Alibaba Group China
Automatic speaker verification (ASV) faces domain shift caused by the mismatch of intrinsic and extrinsic factors, such as recording device and speaking style, in real-world applications, which leads to severe perform... 详细信息
来源: 评论
MAT-SED: A Masked Audio Transformer with Masked-Reconstruction Based Pre-training for Sound Event Detection
arXiv
收藏 引用
arXiv 2024年
作者: Cai, Pengfei Song, Yan Li, Kang Song, Haoyu McLoughlin, Ian National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China China ICT Cluster Singapore Institute of Technology Singapore The Australian National University Australia
Sound event detection (SED) methods that leverage a large pre-trained Transformer encoder network have shown promising performance in recent DCASE challenges. However, they still rely on an RNN-based context network t... 详细信息
来源: 评论
Zero-Shot Personalized Lip-To-speech Synthesis with Face Image Based Voice Control
Zero-Shot Personalized Lip-To-Speech Synthesis with Face Ima...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Zheng-Yan Sheng Yang Ai Zhen-Hua Ling National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei P.R. China
Lip-to-speech (Lip2speech) synthesis, which predicts corresponding speech from talking face images, has witnessed significant progress with various models and training strategies in a series of independent studies. Ho... 详细信息
来源: 评论
Neural speech Phase Prediction Based on Parallel Estimation Architecture and Anti-Wrapping Losses
Neural Speech Phase Prediction Based on Parallel Estimation ...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Yang Ai Zhen-Hua Ling National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei P.R.China
This paper presents a novel speech phase prediction model which predicts wrapped phase spectra directly from amplitude spectra by neural networks. The proposed model is a cascade of a residual convolutional network an... 详细信息
来源: 评论
Constraining Sequential Model Editing with Editing Anchor Compression
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Hao-Xiang Ma, Jun-Yu Ling, Zhen-Hua Zhang, Ningyu Gu, Jia-Chen National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei China Zhejiang University China University of California Los Angeles United States
Large language models (LLMs) struggle with hallucinations due to false or outdated knowledge. Given the high resource demands of retraining these models, there is an increasing focus on developing model editing. Howev... 详细信息
来源: 评论
Non-Contrastive Self-Supervised Learning of Utterance-Level speech Representations
arXiv
收藏 引用
arXiv 2022年
作者: Cho, Jaejin Pappagari, Raghavendra Żelasko, Piotr Moro-Velazquez, Laureano Villalba, Jesús Dehak, Najim Center for Language and Speech Processing Johns Hopkins University BaltimoreMD United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
Considering the abundance of unlabeled speech data and the high labeling costs, unsupervised learning methods can be essential for better system development. One of the most successful methods is contrastive self-supe... 详细信息
来源: 评论
Joint domain adaptation and speech bandwidth extension using time-domain GANs for speaker verification
arXiv
收藏 引用
arXiv 2022年
作者: Kataria, Saurabh Villalba, Jesús Moro-Velázquez, Laureano Dehak, Najim Center for Language and Speech Processing Johns Hopkins University BaltimoreMD United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
speech systems developed for a particular choice of acoustic domain and sampling frequency do not translate easily to others. The usual practice is to learn domain adaptation and bandwidth extension models independent... 详细信息
来源: 评论
Exploring Prompt-based Multi-task Learning for Multimodal Dialog State Tracking and Immersive Multimodal Conversation  11
Exploring Prompt-based Multi-task Learning for Multimodal Di...
收藏 引用
11th Dialog System technology Challenge, DSTC 2023
作者: Chen, Yirong Li, Ya Wang, Tao Xing, Xiaofen Xu, Xiangmin Liu, Quan Liu, Cong Hu, Guoping Guangdong Provincial Key Laboratory of Human Digital Twin School of EE South China University of Technology Guangzhou China iFLYTEK Research Hefei China Pazhou Lab. Guangzhou China School of Future Technology South China University of Technology Guangzhou China State Key Laboratory of Cognitive Intelligence Hefei China National Engineering Research Center of Speech and Language Information Processing Hefei China
With the rise of the metaverse, immersive multimodal conversation has attracted more and more researchers’ attention. Multimodal contexts will become more important for human-computer interaction in the metaverse, es... 详细信息
来源: 评论