咨询与建议

限定检索结果

文献类型

  • 267 篇 会议
  • 155 篇 期刊文献

馆藏范围

  • 422 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 282 篇 工学
    • 184 篇 计算机科学与技术...
    • 164 篇 软件工程
    • 111 篇 信息与通信工程
    • 28 篇 生物工程
    • 27 篇 电子科学与技术(可...
    • 24 篇 电气工程
    • 23 篇 控制科学与工程
    • 21 篇 仪器科学与技术
    • 19 篇 化学工程与技术
    • 11 篇 机械工程
    • 8 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 5 篇 建筑学
    • 4 篇 土木工程
    • 3 篇 材料科学与工程(可...
  • 176 篇 理学
    • 137 篇 物理学
    • 56 篇 数学
    • 31 篇 生物学
    • 19 篇 化学
    • 16 篇 统计学(可授理学、...
    • 8 篇 系统科学
  • 44 篇 管理学
    • 37 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 11 篇 法学
    • 11 篇 社会学
  • 8 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 7 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 4 篇 教育学
    • 4 篇 教育学
  • 3 篇 农学
  • 2 篇 艺术学

主题

  • 59 篇 speech recogniti...
  • 52 篇 training
  • 33 篇 acoustics
  • 31 篇 speech
  • 20 篇 speech processin...
  • 19 篇 feature extracti...
  • 18 篇 hidden markov mo...
  • 18 篇 signal processin...
  • 16 篇 computational mo...
  • 15 篇 conferences
  • 14 篇 speech enhanceme...
  • 13 篇 predictive model...
  • 13 篇 decoding
  • 12 篇 machine translat...
  • 11 篇 speech synthesis
  • 10 篇 training data
  • 10 篇 neural networks
  • 10 篇 data models
  • 9 篇 transformers
  • 9 篇 self-supervised ...

机构

  • 71 篇 national enginee...
  • 51 篇 human language t...
  • 46 篇 center for langu...
  • 31 篇 human language t...
  • 21 篇 center for langu...
  • 21 篇 center for langu...
  • 13 篇 center for langu...
  • 11 篇 iflytek research
  • 10 篇 center for langu...
  • 9 篇 ict cluster sing...
  • 9 篇 human language t...
  • 8 篇 national enginee...
  • 8 篇 center for langu...
  • 8 篇 human language t...
  • 7 篇 center for langu...
  • 7 篇 human language t...
  • 7 篇 university of sc...
  • 7 篇 xiaomi corp.
  • 6 篇 university of sc...
  • 6 篇 state key labora...

作者

  • 49 篇 ling zhen-hua
  • 47 篇 khudanpur sanjee...
  • 35 篇 dehak najim
  • 32 篇 ai yang
  • 29 篇 sanjeev khudanpu...
  • 23 篇 zhen-hua ling
  • 23 篇 dredze mark
  • 19 篇 povey daniel
  • 19 篇 yang ai
  • 18 篇 villalba jesús
  • 18 篇 van durme benjam...
  • 18 篇 daniel povey
  • 17 篇 post matt
  • 16 篇 hermansky hynek
  • 16 篇 lu ye-xin
  • 15 篇 zelasko piotr
  • 14 篇 du hui-peng
  • 13 篇 raj desh
  • 13 篇 gu jia-chen
  • 13 篇 watanabe shinji

语言

  • 344 篇 英文
  • 78 篇 其他
  • 2 篇 中文
检索条件"机构=Center for Language and Speech Processing & Human Language Technology"
422 条 记 录,以下是131-140 订阅
排序:
Beyond Click to Cognition: Effective Interventions for Promoting Examination of False Beliefs in Misinformation  25
Beyond Click to Cognition: Effective Interventions for Promo...
收藏 引用
2025 CHI Conference on human Factors in Computing Systems, CHI 2025
作者: Tanaka, Yuko Arai, Hiromi Inuzuka, Miwa Takahashi, Yoichi Kukita, Minao Iseki, Ryuta Inui, Kentaro Graduate School of Engineering Nagoya Institute of Technology Nagoya Japan Center for Advanced Intelligence Project RIKEN Tokyo Japan Department of Education Tokyo Gakugei University Tokyo Japan Graduate School of Informatics Nagoya University Nagoya Japan Department of Human Sciences Taisho University Tokyo Japan Natural Language Processing Department MBZUAI Abu Dhabi United Arab Emirates
In the digital information ecosystem, clicks serve as a crucial gateway to fact-checking, yet the essential challenge extends beyond this to fostering cognitive shifts that update entrenched false beliefs. This study ... 详细信息
来源: 评论
Can Automated speech Recognition Errors Provide Valuable Clues for Alzheimer’s Disease Detection?
Can Automated Speech Recognition Errors Provide Valuable Clu...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Yin-Long Liu Rui Feng Ye-Xin Lu Jia-Xin Chen Yang Ai Jia-Hong Yuan Zhen-Hua Ling National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei P. R. China Interdisciplinary Research Center for Linguistic Sciences University of Science and Technology of China Hefei P. R. China
Recent advances in automatic speech recognition (ASR) technology have boosted the viability of fully automated Alzheimer’s disease (AD) detection via ASR transcripts. However, there is a lack of understanding of how ... 详细信息
来源: 评论
JOINT GENERATIVE-CONTRASTIVE REPRESENTATION LEARNING FOR ANOMALOUS SOUND DETECTION
arXiv
收藏 引用
arXiv 2023年
作者: Zeng, Xiao-Min Song, Yan Zhuo, Zhu Zhou, Yu Li, Yu-Hong Xue, Hui Dai, Li-Rong McLoughlin, Ian National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei China ICT Cluster Singapore Institute of Technology Singapore Alibaba Group China
In this paper, we propose a joint generative and contrastive representation learning method (GeCo) for anomalous sound detection (ASD). GeCo exploits a Predictive AutoEncoder (PAE) equipped with self-attention as a ge... 详细信息
来源: 评论
Segmental contrastive predictive coding for unsupervised word segmentation
arXiv
收藏 引用
arXiv 2021年
作者: Bhati, Saurabhchand Villalba, Jesús Zelasko, Piotr Moro-Velazquez, Laureano Dehak, Najim Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
Automatic detection of phoneme or word-like units is one of the core objectives in zero-resource speech processing. Recent attempts employ self-supervised training methods, such as contrastive predictive coding (CPC),... 详细信息
来源: 评论
The USTC System for EEG-Music Emotion Recognition Challenge
The USTC System for EEG-Music Emotion Recognition Challenge
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Jiaxin Chen Yiming Wang Yin-Long Liu Rui Feng Jiahong Yuan Zhen-Hua Ling National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei P. R. China Interdisciplinary Research Center for Linguistic Sciences University of Science and Technology of China Hefei P. R. China
This paper presents the Neural Harmony team’s submission to Task 1 (Person Identification) of the ICASSP 2025 EEG-Music Emotion Recognition Challenge, which aims to identify the subject from a given EEG segment. To e... 详细信息
来源: 评论
Deep feature CycleGANs: Speaker identity preserving non-parallel microphone-telephone domain adaptation for speaker verification
arXiv
收藏 引用
arXiv 2021年
作者: Kataria, Saurabh Villalba, Jesús Żelasko, Piotr Moro-Velázquez, Laureano Dehak, Najim Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
With the increase in the availability of speech from varied domains, it is imperative to use such out-of-domain data to improve existing speech systems. Domain adaptation is a prominent pre-processing approach for thi... 详细信息
来源: 评论
Earnings-21: A practical benchmark for ASR in the wild
arXiv
收藏 引用
arXiv 2021年
作者: Del Rio, Miguel Delworth, Natalie Westerman, Ryan Huang, Michelle Bhandari, Nishchal Palakapilly, Joseph McNamara, Quinten Dong, Joshua Zelasko, Piotr Jetté, Miguel *** Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
Commonly used speech corpora inadequately challenge academic and commercial ASR systems. In particular, speech corpora lack metadata needed for detailed analysis and WER measurement. In response, we present Earnings-2... 详细信息
来源: 评论
Wav2Nas: An Exploratory Approach to Nasalance Estimation in speech
Wav2Nas: An Exploratory Approach to Nasalance Estimation in ...
收藏 引用
International Symposium on Chinese Spoken language processing
作者: Rui Feng Yu-Ang Chen Yin-Long Liu Jia-Hong Yuan Zhen-Hua Ling National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei Department of Electronic Engineering and Information Science University of Science and Technology of China Hefei Interdisciplinary Research Center for Linguistic Sciences University of Science and Technology of China Hefei
Nasalance, defined as the ratio of nasal energy to total acoustic energy during speech, is an important metric in speech science and clinical phonetics. Measurement of nasalance, how-ever, requires specialized equipme... 详细信息
来源: 评论
Beyond isolated utterances: Conversational emotion recognition
arXiv
收藏 引用
arXiv 2021年
作者: Pappagari, Raghavendra Zelasko, Piotr Villalba, Jesús Moro-Velazquez, Laureano Dehak, Najim Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
speech emotion recognition is the task of recognizing the speaker's emotional state given a recording of their utterance. While most of the current approaches focus on inferring emotion from isolated utterances, w... 详细信息
来源: 评论
Corrective Retrieval Augmented Generation
arXiv
收藏 引用
arXiv 2024年
作者: Yan, Shi-Qi Gu, Jia-Chen Zhu, Yun Ling, Zhen-Hua National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei China Department of Computer Science University of California Los Angeles United States Google DeepMind United Kingdom
Large language models (LLMs) inevitably exhibit hallucinations since the accuracy of generated texts cannot be secured solely by the parametric knowledge they encapsulate. Although retrieval-augmented generation (RAG)... 详细信息
来源: 评论