咨询与建议

限定检索结果

文献类型

  • 267 篇 会议
  • 155 篇 期刊文献

馆藏范围

  • 422 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 282 篇 工学
    • 184 篇 计算机科学与技术...
    • 164 篇 软件工程
    • 111 篇 信息与通信工程
    • 28 篇 生物工程
    • 27 篇 电子科学与技术(可...
    • 24 篇 电气工程
    • 23 篇 控制科学与工程
    • 21 篇 仪器科学与技术
    • 19 篇 化学工程与技术
    • 11 篇 机械工程
    • 8 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 5 篇 建筑学
    • 4 篇 土木工程
    • 3 篇 材料科学与工程(可...
  • 176 篇 理学
    • 137 篇 物理学
    • 56 篇 数学
    • 31 篇 生物学
    • 19 篇 化学
    • 16 篇 统计学(可授理学、...
    • 8 篇 系统科学
  • 44 篇 管理学
    • 37 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 11 篇 法学
    • 11 篇 社会学
  • 8 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 7 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 4 篇 教育学
    • 4 篇 教育学
  • 3 篇 农学
  • 2 篇 艺术学

主题

  • 59 篇 speech recogniti...
  • 52 篇 training
  • 33 篇 acoustics
  • 31 篇 speech
  • 20 篇 speech processin...
  • 19 篇 feature extracti...
  • 18 篇 hidden markov mo...
  • 18 篇 signal processin...
  • 16 篇 computational mo...
  • 15 篇 conferences
  • 14 篇 speech enhanceme...
  • 13 篇 predictive model...
  • 13 篇 decoding
  • 12 篇 machine translat...
  • 11 篇 speech synthesis
  • 10 篇 training data
  • 10 篇 neural networks
  • 10 篇 data models
  • 9 篇 transformers
  • 9 篇 self-supervised ...

机构

  • 71 篇 national enginee...
  • 51 篇 human language t...
  • 46 篇 center for langu...
  • 31 篇 human language t...
  • 21 篇 center for langu...
  • 21 篇 center for langu...
  • 13 篇 center for langu...
  • 11 篇 iflytek research
  • 10 篇 center for langu...
  • 9 篇 ict cluster sing...
  • 9 篇 human language t...
  • 8 篇 national enginee...
  • 8 篇 center for langu...
  • 8 篇 human language t...
  • 7 篇 center for langu...
  • 7 篇 human language t...
  • 7 篇 university of sc...
  • 7 篇 xiaomi corp.
  • 6 篇 university of sc...
  • 6 篇 state key labora...

作者

  • 49 篇 ling zhen-hua
  • 47 篇 khudanpur sanjee...
  • 35 篇 dehak najim
  • 32 篇 ai yang
  • 29 篇 sanjeev khudanpu...
  • 23 篇 zhen-hua ling
  • 23 篇 dredze mark
  • 19 篇 povey daniel
  • 19 篇 yang ai
  • 18 篇 villalba jesús
  • 18 篇 van durme benjam...
  • 18 篇 daniel povey
  • 17 篇 post matt
  • 16 篇 hermansky hynek
  • 16 篇 lu ye-xin
  • 15 篇 zelasko piotr
  • 14 篇 du hui-peng
  • 13 篇 raj desh
  • 13 篇 gu jia-chen
  • 13 篇 watanabe shinji

语言

  • 344 篇 英文
  • 78 篇 其他
  • 2 篇 中文
检索条件"机构=Center for Language and Speech Processing & Human Language Technology"
422 条 记 录,以下是151-160 订阅
排序:
Unsupervised speech segmentation and variable rate representation learning using segmental contrastive predictive coding
arXiv
收藏 引用
arXiv 2021年
作者: Bhati, Saurabhchand Villalba, Jesús Zelasko, Piotr Moro-Velazquez, Laureano Dehak, Najim Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
Typically, unsupervised segmentation of speech into the phone and word-like units are treated as separate tasks and are often done via different methods which do not fully leverage the inter-dependence of the two task... 详细信息
来源: 评论
Lhotse: A speech data representation library for the modern deep learning ecosystem
arXiv
收藏 引用
arXiv 2021年
作者: Zelasko, Piotr Povey, Daniel Trmal, Jan Khudanpur, Sanjeev Johns Hopkins University BaltimoreMD21216 United States Xiaomi China Center for Language and Speech Processing Human Language Technology Center of Excellence
speech data is notoriously difficult to work with due to a variety of codecs, lengths of recordings, and meta-data formats. We present Lhotse, a speech data representation library that draws upon lessons learned from ... 详细信息
来源: 评论
USTC-NELSLIP at SemEval-2023 Task 2: Statistical Construction and Dual Adaptation of Gazetteer for Multilingual Complex NER
arXiv
收藏 引用
arXiv 2023年
作者: Ma, Jun-Yu Gu, Jia-Chen Qi, Jiajun Ling, Zhen-Hua Liu, Quan Zhao, Xiaoyi National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China China State Key Laboratory of Cognitive Intelligence iFLYTEK Research China Communication University of China China
This paper describes the system developed by the USTC-NELSLIP team for SemEval-2023 Task 2 Multilingual Complex Named Entity Recognition (MultiCoNER II). A method named Statistical Construction and Dual Adaptation of ... 详细信息
来源: 评论
Meta Representation Learning Method for Robust Speaker Verification in Unseen Domains
Meta Representation Learning Method for Robust Speaker Verif...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Jian-Tao Zhang Yan Song Jin Li Wu Guo Hao-Yu Song Ian McLoughlin National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei China iFLYTEK Research iFLYTEK Co. Ltd. Hefei China The Australian National University Australian ICT Cluster Singapore Institute of Technology Singapore
This paper presents a meta representation learning method for robust speaker verification (SV) in unseen domains. It is known that the existing embedding learning based SV systems may suffer from domain mismatch issue...
来源: 评论
PQLM - MULTILINGUAL DECENTRALIZED PORTABLE QUANTUM language MODEL FOR PRIVACY PROTECTION
arXiv
收藏 引用
arXiv 2022年
作者: Li, Shuyue Stella Zhang, Xiangyu Zhou, Shu Shu, Hongchao Liang, Ruixing Liu, Hexin Garcia, Leibny Paola Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States Department of Physics Hong Kong University of Science and Technology Hong Kong School of Electrical and Electronic Engineering Nanyang Technological University Singapore
With careful manipulation, malicious agents can reverse engineer private information encoded in pre-trained language models. Security concerns motivate the development of quantum pre-training. In this work, we propose... 详细信息
来源: 评论
Multimodal Tree Decoder for Table of Contents Extraction in Document Images
arXiv
收藏 引用
arXiv 2022年
作者: Hu, Pengfei Zhang, Zhenrong Zhang, Jianshu Du, Jun Wu, Jiajia National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Anhui Hefei China iFLYTEK Research China
Table of contents (ToC) extraction aims to extract headings of different levels in documents to better understand the outline of the contents, which can be widely used for document understanding and information retrie... 详细信息
来源: 评论
Multi-Class Spectral Clustering with Overlaps for Speaker Diarization
Multi-Class Spectral Clustering with Overlaps for Speaker Di...
收藏 引用
IEEE Spoken language technology Workshop
作者: Desh Raj Zili Huang Sanjeev Khudanpur Center for Language and Speech Processing The Johns Hopkins University Baltimore MD USA Human Language Technology Center of Excellence The Johns Hopkins University Baltimore MD USA
This paper describes a method for overlap-aware speaker diarization. Given an overlap detector and a speaker embedding extractor, our method performs spectral clustering of segments informed by the output of the overl... 详细信息
来源: 评论
Beyond Isolated Utterances: Conversational Emotion Recognition
Beyond Isolated Utterances: Conversational Emotion Recogniti...
收藏 引用
IEEE Workshop on Automatic speech Recognition and Understanding
作者: Raghavendra Pappagari Piotr Żelasko Jesús Villalba Laureano Moro-Velazquez Najim Dehak Center for Language and Speech Processing Johns Hopkins University Baltimore MD USA Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD USA
speech emotion recognition is the task of recognizing the speaker's emotional state given a recording of their utterance. While most of the current approaches focus on inferring emotion from isolated utterances, w... 详细信息
来源: 评论
Improving Reconstruction Loss Based Speaker Embedding in Unsupervised and Semi-Supervised Scenarios
Improving Reconstruction Loss Based Speaker Embedding in Uns...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Jaejin Cho Piotr Żelasko Jesús Villalba Najim Dehak Center for Language and Speech Processing Johns Hopkins University Baltimore MD USA Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD USA
Text-to-speech (TTS) models trained to minimize the spectrogram reconstruction loss can learn speaker embeddings without explicit speaker identity supervision, unlike x-vector speaker identification (SID) systems. Lev... 详细信息
来源: 评论
Anchored Monotonic Alignment and Representation Substitution for Rare Spontaneous Behaviors in Spontaneous speech Synthesis
Anchored Monotonic Alignment and Representation Substitution...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Ning-Qian Wu Ya-Jun Hu Liping Chen Zhen-Hua Ling National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei P.R.China iFLYTEK Research iFLYTEK Co. Ltd. China MoE Key Laboratory of Brain-Inspired Intelligent Perception and Cognition University of Science and Technology of China
Spontaneous behaviors in speech pose significant challenges for speech synthesis. Existing research has not adequately addressed these behaviors, with most studies relying on specially recorded datasets. In contrast, ... 详细信息
来源: 评论