咨询与建议

限定检索结果

文献类型

  • 267 篇 会议
  • 155 篇 期刊文献

馆藏范围

  • 422 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 282 篇 工学
    • 184 篇 计算机科学与技术...
    • 164 篇 软件工程
    • 111 篇 信息与通信工程
    • 28 篇 生物工程
    • 27 篇 电子科学与技术(可...
    • 24 篇 电气工程
    • 23 篇 控制科学与工程
    • 21 篇 仪器科学与技术
    • 19 篇 化学工程与技术
    • 11 篇 机械工程
    • 8 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 5 篇 建筑学
    • 4 篇 土木工程
    • 3 篇 材料科学与工程(可...
  • 176 篇 理学
    • 137 篇 物理学
    • 56 篇 数学
    • 31 篇 生物学
    • 19 篇 化学
    • 16 篇 统计学(可授理学、...
    • 8 篇 系统科学
  • 44 篇 管理学
    • 37 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 11 篇 法学
    • 11 篇 社会学
  • 8 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 7 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 4 篇 教育学
    • 4 篇 教育学
  • 3 篇 农学
  • 2 篇 艺术学

主题

  • 59 篇 speech recogniti...
  • 52 篇 training
  • 33 篇 acoustics
  • 31 篇 speech
  • 20 篇 speech processin...
  • 19 篇 feature extracti...
  • 18 篇 hidden markov mo...
  • 18 篇 signal processin...
  • 16 篇 computational mo...
  • 15 篇 conferences
  • 14 篇 speech enhanceme...
  • 13 篇 predictive model...
  • 13 篇 decoding
  • 12 篇 machine translat...
  • 11 篇 speech synthesis
  • 10 篇 training data
  • 10 篇 neural networks
  • 10 篇 data models
  • 9 篇 transformers
  • 9 篇 self-supervised ...

机构

  • 71 篇 national enginee...
  • 51 篇 human language t...
  • 46 篇 center for langu...
  • 31 篇 human language t...
  • 21 篇 center for langu...
  • 21 篇 center for langu...
  • 13 篇 center for langu...
  • 11 篇 iflytek research
  • 10 篇 center for langu...
  • 9 篇 ict cluster sing...
  • 9 篇 human language t...
  • 8 篇 national enginee...
  • 8 篇 center for langu...
  • 8 篇 human language t...
  • 7 篇 center for langu...
  • 7 篇 human language t...
  • 7 篇 university of sc...
  • 7 篇 xiaomi corp.
  • 6 篇 university of sc...
  • 6 篇 state key labora...

作者

  • 49 篇 ling zhen-hua
  • 47 篇 khudanpur sanjee...
  • 35 篇 dehak najim
  • 32 篇 ai yang
  • 29 篇 sanjeev khudanpu...
  • 23 篇 zhen-hua ling
  • 23 篇 dredze mark
  • 19 篇 povey daniel
  • 19 篇 yang ai
  • 18 篇 villalba jesús
  • 18 篇 van durme benjam...
  • 18 篇 daniel povey
  • 17 篇 post matt
  • 16 篇 hermansky hynek
  • 16 篇 lu ye-xin
  • 15 篇 zelasko piotr
  • 14 篇 du hui-peng
  • 13 篇 raj desh
  • 13 篇 gu jia-chen
  • 13 篇 watanabe shinji

语言

  • 344 篇 英文
  • 78 篇 其他
  • 2 篇 中文
检索条件"机构=Center for Language and Speech Processing & Human Language Technology"
422 条 记 录,以下是161-170 订阅
排序:
STABILIZED TRAINING OF JOINT ENERGY-BASED MODELS AND THEIR PRACTICAL APPLICATIONS
arXiv
收藏 引用
arXiv 2023年
作者: Sustek, Martin Sadhu, Samik Burget, Lukas Hermansky, Hynek Villalba, Jesus Moro-Velazquez, Laureano Dehak, Najim Faculty of Information Technology Brno University of Technology Czechia - FIT BUT. Czech Republic Center for Language and Speech Processing Johns Hopkins University CLSP JHU United States CLSP JHU FIT BUT. HLTCOE JHU United States
The recently proposed Joint Energy-based Model (JEM) interprets discriminatively trained classifier p(y|x) as an energy model, which is also trained as a generative model describing the distribution of the input obser... 详细信息
来源: 评论
MADNet: Maximizing Addressee Deduction Expectation for Multi-Party Conversation Generation
arXiv
收藏 引用
arXiv 2023年
作者: Gu, Jia-Chen Tan, Chao-Hong Chu, Caiyuan Ling, Zhen-Hua Tao, Chongyang Liu, Quan Liu, Cong National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei China iFLYTEK Research Hefei China Peking University Beijing China State Key Laboratory of Cognitive Intelligence China
Modeling multi-party conversations (MPCs) with graph neural networks has been proven effective at capturing complicated and graphical information flows. However, existing methods rely heavily on the necessary addresse... 详细信息
来源: 评论
The JHU submission to VoxSRC-21: Track 3
arXiv
收藏 引用
arXiv 2021年
作者: Cho, Jaejin Villalba, Jesús Dehak, Najim Center for Language and Speech Processing Johns Hopkins University BaltimoreMD United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
This technical report describes Johns Hopkins University speaker recognition system submitted to Voxceleb Speaker Recognition Challenge 2021 Track 3: Self-supervised speaker verification (closed). Our overall training... 详细信息
来源: 评论
What helps transformers recognize conversational structure? Importance of context, punctuation, and labels in dialog act recognition
arXiv
收藏 引用
arXiv 2021年
作者: Żelasko, Piotr Pappagari, Raghavendra Dehak, Najim Center of Language and Speech Processing Johns Hopkins University BaltimoreMD United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
Dialog acts can be interpreted as the atomic units of a conversation, more fine-grained than utterances, characterized by a specific communicative function. The ability to structure a conversational transcript as a se...
来源: 评论
Robust OpenVocabulary Translation from Visual Text Representations
arXiv
收藏 引用
arXiv 2021年
作者: Salesky, Elizabeth Etter, David Post, Matt Center for Language and Speech Processing Johns Hopkins University BaltimoreMD United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
Machine translation models have discrete vocabularies and commonly use subword segmentation techniques to achieve an 'open vocabulary.' This approach relies on consistent and correct underlying unicode sequenc... 详细信息
来源: 评论
Representation learning to classify and detect adversarial attacks against speaker and speech recognition systems
arXiv
收藏 引用
arXiv 2021年
作者: Villalba, Jesús Joshi, Sonal Zelasko, Piotr Dehak, Najim Center for Language and Speech Processing Johns Hopkins University BaltimoreMD United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
Adversarial attacks have become a major threat for machine learning applications. There is a growing interest in studying these attacks in the audio domain, e.g, speech and speaker recognition;and find defenses agains... 详细信息
来源: 评论
Wake word detection with streaming transformers
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Yiming Lv, Hang Povey, Daniel Xie, Lei Khudanpur, Sanjeev Center for Language and Speech Processing Johns Hopkins University BaltimoreMD United States Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States ASLP@NPU School of Computer Science Northwestern Polytechnical University Xi’an China Xiaomi Corporation Beijing China
Modern wake word detection systems usually rely on neural networks for acoustic modeling. Transformers has recently shown superior performance over LSTM and convolutional networks in various sequence modeling tasks wi... 详细信息
来源: 评论
A Parallelizable Lattice Rescoring Strategy with Neural language Models
A Parallelizable Lattice Rescoring Strategy with Neural Lang...
收藏 引用
IEEE International Conference on Acoustics, speech and Signal processing
作者: Ke Li Daniel Povey Sanjeev Khudanpur Center for Language and Speech Processing The Johns Hopkins University Baltimore MD USA Xiaomi Corp Beijing China Human Language Technology Center of Excellence The Johns Hopkins University Baltimore MD USA
This paper proposes a parallel computation strategy and a posterior-based lattice expansion algorithm for efficient lattice rescoring with neural language models (LMs) for automatic speech recognition. First, lattices... 详细信息
来源: 评论
Reformulating DOVER-Lap label mapping as a graph partitioning problem
arXiv
收藏 引用
arXiv 2021年
作者: Raj, Desh Khudanpur, Sanjeev Center for Language and Speech Processing Johns Hopkins University BaltimoreMD21218 United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21218 United States
We recently proposed DOVER-Lap, a method for combining overlap-aware speaker diarization system outputs. DOVER-Lap improved upon its predecessor DOVER by using a label mapping method based on globally-informed greedy ... 详细信息
来源: 评论
DOVER-Lap: A Method for Combining Overlap-Aware Diarization Outputs
DOVER-Lap: A Method for Combining Overlap-Aware Diarization ...
收藏 引用
IEEE Spoken language technology Workshop
作者: Desh Raj Leibny Paola Garcia-Perera Zili Huang Shinji Watanabe Daniel Povey Andreas Stolcke Sanjeev Khudanpur Center for Language and Speech Processing The Johns Hopkins University Baltimore MD USA Human Language Technology Center of Excellence The Johns Hopkins University Baltimore MD USA Xiaomi Corp. Beijing China Amazon Alexa Speech Sunnyvale CA USA
Several advances have been made recently towards handling overlapping speech for speaker diarization. Since speech and natural language tasks often benefit from ensemble techniques, we propose an algorithm for combini... 详细信息
来源: 评论