咨询与建议

限定检索结果

文献类型

  • 267 篇 会议
  • 155 篇 期刊文献

馆藏范围

  • 422 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 282 篇 工学
    • 184 篇 计算机科学与技术...
    • 164 篇 软件工程
    • 111 篇 信息与通信工程
    • 28 篇 生物工程
    • 27 篇 电子科学与技术(可...
    • 24 篇 电气工程
    • 23 篇 控制科学与工程
    • 21 篇 仪器科学与技术
    • 19 篇 化学工程与技术
    • 11 篇 机械工程
    • 8 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 5 篇 建筑学
    • 4 篇 土木工程
    • 3 篇 材料科学与工程(可...
  • 176 篇 理学
    • 137 篇 物理学
    • 56 篇 数学
    • 31 篇 生物学
    • 19 篇 化学
    • 16 篇 统计学(可授理学、...
    • 8 篇 系统科学
  • 44 篇 管理学
    • 37 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 11 篇 法学
    • 11 篇 社会学
  • 8 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 7 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 4 篇 教育学
    • 4 篇 教育学
  • 3 篇 农学
  • 2 篇 艺术学

主题

  • 59 篇 speech recogniti...
  • 52 篇 training
  • 33 篇 acoustics
  • 31 篇 speech
  • 20 篇 speech processin...
  • 19 篇 feature extracti...
  • 18 篇 hidden markov mo...
  • 18 篇 signal processin...
  • 16 篇 computational mo...
  • 15 篇 conferences
  • 14 篇 speech enhanceme...
  • 13 篇 predictive model...
  • 13 篇 decoding
  • 12 篇 machine translat...
  • 11 篇 speech synthesis
  • 10 篇 training data
  • 10 篇 neural networks
  • 10 篇 data models
  • 9 篇 transformers
  • 9 篇 self-supervised ...

机构

  • 71 篇 national enginee...
  • 51 篇 human language t...
  • 46 篇 center for langu...
  • 31 篇 human language t...
  • 21 篇 center for langu...
  • 21 篇 center for langu...
  • 13 篇 center for langu...
  • 11 篇 iflytek research
  • 10 篇 center for langu...
  • 9 篇 ict cluster sing...
  • 9 篇 human language t...
  • 8 篇 national enginee...
  • 8 篇 center for langu...
  • 8 篇 human language t...
  • 7 篇 center for langu...
  • 7 篇 human language t...
  • 7 篇 university of sc...
  • 7 篇 xiaomi corp.
  • 6 篇 university of sc...
  • 6 篇 state key labora...

作者

  • 49 篇 ling zhen-hua
  • 47 篇 khudanpur sanjee...
  • 35 篇 dehak najim
  • 32 篇 ai yang
  • 29 篇 sanjeev khudanpu...
  • 23 篇 zhen-hua ling
  • 23 篇 dredze mark
  • 19 篇 povey daniel
  • 19 篇 yang ai
  • 18 篇 villalba jesús
  • 18 篇 van durme benjam...
  • 18 篇 daniel povey
  • 17 篇 post matt
  • 16 篇 hermansky hynek
  • 16 篇 lu ye-xin
  • 15 篇 zelasko piotr
  • 14 篇 du hui-peng
  • 13 篇 raj desh
  • 13 篇 gu jia-chen
  • 13 篇 watanabe shinji

语言

  • 344 篇 英文
  • 78 篇 其他
  • 2 篇 中文
检索条件"机构=Center for Language and Speech Processing & Human Language Technology"
422 条 记 录,以下是11-20 订阅
排序:
Does Sentence Segmentation Matter for Machine Translation?  7
Does Sentence Segmentation Matter for Machine Translation?
收藏 引用
7th Conference on Machine Translation, WMT 2022
作者: Wicks, Rachel Post, Matt Center for Language and Speech Processing United States Human Language Technology Center of Excellence Johns Hopkins University United States
For the most part, NLP applications operate at the sentence level. Since sentences occur most naturally not on their own but embedded in documents, they must be extracted and segmented via the use of a segmenter, of w...
来源: 评论
Prototype based Masked Audio Model for Self-Supervised Learning of Sound Event Detection
Prototype based Masked Audio Model for Self-Supervised Learn...
收藏 引用
2025 IEEE International Conference on Acoustics, speech, and Signal processing, ICASSP 2025
作者: Cai, Pengfei Song, Yan Jiang, Nan Gu, Qing McLoughlin, Ian National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China China ICT Cluster Singapore Institute of Technology Singapore
A significant challenge in sound event detection (SED) is the effective utilization of unlabeled data, given the limited availability of labeled data due to high annotation costs. Semi-supervised algorithms rely on la... 详细信息
来源: 评论
Exploring Representational Disparities Between Multilingual and Bilingual Translation Models
arXiv
收藏 引用
arXiv 2023年
作者: Verma, Neha Murray, Kenton Duh, Kevin Center for Language and Speech Processing Human Language Technology Center of Excellence
Multilingual machine translation has proven immensely useful for both parameter efficiency and overall performance across many language pairs via complete multilingual parameter sharing. However, some language pairs i... 详细信息
来源: 评论
Deepfake Algorithm Recognition System with Augmented Data for ADD 2023 Challenge
Deepfake Algorithm Recognition System with Augmented Data fo...
收藏 引用
2023 Workshop on Deepfake Audio Detection and Analysis, DADA 2023
作者: Zeng, Xiao-Min Zhang, Jian-Tao Li, Kang Liu, Zhuo-Li Xie, Wei-Lin Song, Yan National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei China
In this paper, we describe our submitted systems to the ADD2023 Challenge Track 3–Deepfake algorithm recognition (AR). This task requires not only identifying known deepfake algorithms in closed-set but also distingu... 详细信息
来源: 评论
Zero-Shot Personalized Lip-To-speech Synthesis with Face Image Based Voice Control  48
Zero-Shot Personalized Lip-To-Speech Synthesis with Face Ima...
收藏 引用
48th IEEE International Conference on Acoustics, speech and Signal processing, ICASSP 2023
作者: Sheng, Zheng-Yan Ai, Yang Ling, Zhen-Hua University of Science and Technology of China National Engineering Research Center of Speech and Language Information Processing Hefei China
Lip-to-speech (Lip2speech) synthesis, which predicts corresponding speech from talking face images, has witnessed significant progress with various models and training strategies in a series of independent studies. Ho... 详细信息
来源: 评论
speech Reconstruction from Silent Tongue and Lip Articulation by Pseudo Target Generation and Domain Adversarial Training  48
Speech Reconstruction from Silent Tongue and Lip Articulatio...
收藏 引用
48th IEEE International Conference on Acoustics, speech and Signal processing, ICASSP 2023
作者: Zheng, Rui-Chen Ai, Yang Ling, Zhen-Hua University of Science and Technology of China National Engineering Research Center of Speech and Language Information Processing Hefei China
This paper studies the task of speech reconstruction from ultrasound tongue images and optical lip videos recorded in a silent speaking mode, where people only activate their intra-oral and extra-oral articulators wit... 详细信息
来源: 评论
Neural speech Phase Prediction Based on Parallel Estimation Architecture and Anti-Wrapping Losses  48
Neural Speech Phase Prediction Based on Parallel Estimation ...
收藏 引用
48th IEEE International Conference on Acoustics, speech and Signal processing, ICASSP 2023
作者: Ai, Yang Ling, Zhen-Hua University of Science and Technology of China National Engineering Research Center of Speech and Language Information Processing Hefei China
This paper presents a novel speech phase prediction model which predicts wrapped phase spectra directly from amplitude spectra by neural networks. The proposed model is a cascade of a residual convolutional network an... 详细信息
来源: 评论
Merging Feed-Forward Sublayers for Compressed Transformers
arXiv
收藏 引用
arXiv 2025年
作者: Verma, Neha Murray, Kenton Duh, Kevin Center for Language and Speech Processing United States Human Language Technology Center Excellence Johns Hopkins University United States
With the ubiquity of large deep learning models and their growing number of use cases, the need for high-quality compression techniques is growing in order to deploy these models widely across diverse hardware and mem... 详细信息
来源: 评论
Clustering Unsupervised Representations as Defense Against Poisoning Attacks on speech Commands Classification System
Clustering Unsupervised Representations as Defense Against P...
收藏 引用
2023 IEEE Automatic speech Recognition and Understanding Workshop, ASRU 2023
作者: Thebaud, Thomas Joshi, Sonal Li, Henry Sustek, Martin Villalba, Jesus Khudanpur, Sanjeev Dehak, Najim Johns Hopkins University Center for Language and Speech Processing United States Brno University of Technology Faculty of Information Technology Czech Republic
Poisoning attacks entail attackers intentionally tampering with training data. In this paper, we consider a dirty-label poisoning attack scenario on a speech commands classification system. The threat model assumes th... 详细信息
来源: 评论
The USTC System for EEG-Music Emotion Recognition Challenge
The USTC System for EEG-Music Emotion Recognition Challenge
收藏 引用
2025 IEEE International Conference on Acoustics, speech, and Signal processing, ICASSP 2025
作者: Chen, Jiaxin Wang, Yiming Liu, Yin-Long Feng, Rui Yuan, Jiahong Ling, Zhen-Hua National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei China Interdisciplinary Research Center for Linguistic Sciences University of Science and Technology of China Hefei China
This paper presents the Neural Harmony team's submission to Task 1 (Person Identification) of the ICASSP 2025 EEG-Music Emotion Recognition Challenge, which aims to identify the subject from a given EEG segment. T... 详细信息
来源: 评论