咨询与建议

限定检索结果

文献类型

  • 267 篇 会议
  • 155 篇 期刊文献

馆藏范围

  • 422 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 282 篇 工学
    • 184 篇 计算机科学与技术...
    • 164 篇 软件工程
    • 111 篇 信息与通信工程
    • 28 篇 生物工程
    • 27 篇 电子科学与技术(可...
    • 24 篇 电气工程
    • 23 篇 控制科学与工程
    • 21 篇 仪器科学与技术
    • 19 篇 化学工程与技术
    • 11 篇 机械工程
    • 8 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 5 篇 建筑学
    • 4 篇 土木工程
    • 3 篇 材料科学与工程(可...
  • 176 篇 理学
    • 137 篇 物理学
    • 56 篇 数学
    • 31 篇 生物学
    • 19 篇 化学
    • 16 篇 统计学(可授理学、...
    • 8 篇 系统科学
  • 44 篇 管理学
    • 37 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 11 篇 法学
    • 11 篇 社会学
  • 8 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 7 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 4 篇 教育学
    • 4 篇 教育学
  • 3 篇 农学
  • 2 篇 艺术学

主题

  • 59 篇 speech recogniti...
  • 52 篇 training
  • 33 篇 acoustics
  • 31 篇 speech
  • 20 篇 speech processin...
  • 19 篇 feature extracti...
  • 18 篇 hidden markov mo...
  • 18 篇 signal processin...
  • 16 篇 computational mo...
  • 15 篇 conferences
  • 14 篇 speech enhanceme...
  • 13 篇 predictive model...
  • 13 篇 decoding
  • 12 篇 machine translat...
  • 11 篇 speech synthesis
  • 10 篇 training data
  • 10 篇 neural networks
  • 10 篇 data models
  • 9 篇 transformers
  • 9 篇 self-supervised ...

机构

  • 71 篇 national enginee...
  • 51 篇 human language t...
  • 46 篇 center for langu...
  • 31 篇 human language t...
  • 21 篇 center for langu...
  • 21 篇 center for langu...
  • 13 篇 center for langu...
  • 11 篇 iflytek research
  • 10 篇 center for langu...
  • 9 篇 ict cluster sing...
  • 9 篇 human language t...
  • 8 篇 national enginee...
  • 8 篇 center for langu...
  • 8 篇 human language t...
  • 7 篇 center for langu...
  • 7 篇 human language t...
  • 7 篇 university of sc...
  • 7 篇 xiaomi corp.
  • 6 篇 university of sc...
  • 6 篇 state key labora...

作者

  • 49 篇 ling zhen-hua
  • 47 篇 khudanpur sanjee...
  • 35 篇 dehak najim
  • 32 篇 ai yang
  • 29 篇 sanjeev khudanpu...
  • 23 篇 zhen-hua ling
  • 23 篇 dredze mark
  • 19 篇 povey daniel
  • 19 篇 yang ai
  • 18 篇 villalba jesús
  • 18 篇 van durme benjam...
  • 18 篇 daniel povey
  • 17 篇 post matt
  • 16 篇 hermansky hynek
  • 16 篇 lu ye-xin
  • 15 篇 zelasko piotr
  • 14 篇 du hui-peng
  • 13 篇 raj desh
  • 13 篇 gu jia-chen
  • 13 篇 watanabe shinji

语言

  • 344 篇 英文
  • 78 篇 其他
  • 2 篇 中文
检索条件"机构=Center for Language and Speech Processing & Human Language Technology"
422 条 记 录,以下是201-210 订阅
排序:
PYCHAIN: A fully parallelized pytorch implementation of LF-MMI for end-to-end ASR
arXiv
收藏 引用
arXiv 2020年
作者: Shao, Yiwen Wang, Yiming Povey, Daniel Khudanpur, Sanjeev Center for Language and Speech Processing Johns Hopkins University BaltimoreMD United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States Xiaomi Inc. Beijing China
We present PYCHAIN, a fully parallelized PyTorch implementation of end-to-end lattice-free maximum mutual information (LF-MMI) training for the so-called chain models in the Kaldi automatic speech recognition (ASR) to... 详细信息
来源: 评论
Exploiting Extended Reality Technologies for Educational Microscopy  17th
Exploiting Extended Reality Technologies for Educational Mic...
收藏 引用
17th International Conference on Virtual Reality and Augmented Reality, EuroVR 2020
作者: Theodoropoulou, Helena G. Kiourt, Chairi Lalos, Aris S. Koutsoudis, Anestis Paxinou, Evgenia Kalles, Dimitris Pavlidis, George Industrial Systems Institute Athena-Research and Innovation Center in Information Communication and Knowledge Technologies Patra Greece Institute for Language and Speech Processing Athena-Research and Innovation Center in Information Communication and Knowledge Technologies Xanthi Greece School of Science and Technology Hellenic Open University Patra Greece
Exploiting extended reality technologies in laboratory training enhances both teaching and learning experiences. It complements the existing traditional learning/teaching methods related to science, technology, engine... 详细信息
来源: 评论
Software in the natural world: A computational approach to hierarchical emergence
arXiv
收藏 引用
arXiv 2024年
作者: Rosas, Fernando E. Geiger, Bernhard C. Luppi, Andrea I. Seth, Anil K. Polani, Daniel Gastpar, Michael Mediano, Pedro A.M. Department of Informatics University of Sussex United Kingdom Sussex Centre for Consciousness Science and Sussex AI University of Sussex United Kingdom Center for Psychedelic Research and Centre for Complexity Science Department of Brain Science Imperial College London United Kingdom Center for Eudaimonia and Human Flourishing University of Oxford United Kingdom Know-Center GmbH Graz Austria Signal Processing and Speech Communication Laboratory Graz University of Technology Graz Austria Montreal Neurological Institute McGill University Canada Department of Computer Science University of Hertfordshire Hatfield United Kingdom School of Computer and Communication Sciences EPFL Lausanne Switzerland Department of Computing Imperial College London United Kingdom Division of Psychology and Language Sciences University College London United Kingdom
Understanding the functional architecture of complex systems is crucial to illuminate their inner workings and enable effective methods for their prediction and control. Recent advances have introduced tools to charac... 详细信息
来源: 评论
Wake Word Detection with Alignment-Free Lattice-Free MMI
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Yiming Lv, Hang Povey, Daniel Xie, Lei Khudanpur, Sanjeev Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States Xiaomi Inc. Beijing China ASLP@NPU School of Computer Science Northwestern Polytechnical University Xi’an China
Always-on spoken language interfaces, e.g. personal digital assistants, rely on a wake word to start processing spoken input. We present novel methods to train a hybrid DNN/HMM wake word detection system from partiall... 详细信息
来源: 评论
A call for prudent choice of subword merge operations in neural machine translation
arXiv
收藏 引用
arXiv 2019年
作者: Ding, Shuoyang Renduchintala, Adithya Duh, Kevin Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University
Most neural machine translation systems are built upon subword units extracted by methods such as Byte-Pair Encoding (BPE) or wordpiece. However, the choice of number of merge operations is generally made by following... 详细信息
来源: 评论
Weakly-Supervised Depression Detection in speech Through Self-Learning Based Label Correction
IEEE Transactions on Audio, Speech and Language Processing
收藏 引用
IEEE Transactions on Audio, speech and language processing 2025年 33卷 748-758页
作者: Yanfei Sun Yuanyuan Zhou Xinzhou Xu Jin Qi Feiyi Xu Zhao Ren Björn W. Schuller School of Internet of Things Nanjing University of Posts and Telecommunications Nanjing China Wuxi University Wuxi China School of Computer Science Nanjing University of Posts and Telecommunications Nanjing China Signal Processing and Speech Communication Laboratory Graz University of Technology Graz Austria Key Laboratory of Modern Acoustics MOE Nanjing University Nanjing China Cognitive Systems Lab University of Bremen Bremen Germany Chair of Health Informatics Technische Universität München (TUM) München Germany Munich Data Science Institute Munich Germany Munich Center for Machine Learning Munich Germany GLAM – the Group on Language Audio & Music Imperial College London London U.K.
Automated Depression Detection (ADD) in speech aims to automatically estimate one's depressive attributes through artificial intelligence tools towards spoken signals. Nevertheless, existing speech-based ADD works... 详细信息
来源: 评论
How Phonotactics Affect Multilingual and Zero-Shot ASR Performance
How Phonotactics Affect Multilingual and Zero-Shot ASR Perfo...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Siyuan Feng Piotr Żelasko Laureano Moro-Velázquez Ali Abavisani Mark Hasegawa-Johnson Odette Scharenborg Najim Dehak Multimedia Computing Group Delft University of Technology Delft The Netherlands Center for Language and Speech Processing Johns Hopkins University Baltimore MD USA Johns Hopkins University Baltimore MD USA University of Illinois at Urbana-Champaign IL USA
The idea of combining multiple languages’ recordings to train a single automatic speech recognition (ASR) model brings the promise of the emergence of universal speech representation. Recently, a Transformer encoder-... 详细信息
来源: 评论
That sounds familiar: An analysis of phonetic representations transfer across languages
arXiv
收藏 引用
arXiv 2020年
作者: Zelasko, Piotr Velazquez, Laureano Moro Johnson, Mark Hasegawa Scharenborg, Odette Dehak, Najim Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States Ece Department and Beckman Institute University of Illinois Urbana-Champaign United States Multimedia Computing Group Delft University of Technology Delft Netherlands
Only a handful of the worlds languages are abundant with the resources that enable practical applications of speech processing technologies. One of the methods to overcome this problem is to use the resources existing... 详细信息
来源: 评论
Zero Resource Speaking Rate Estimation from Change Point Detection of Syllable-like Units  44
Zero Resource Speaking Rate Estimation from Change Point Det...
收藏 引用
44th IEEE International Conference on Acoustics, speech, and Signal processing, ICASSP 2019
作者: Nayak, Shekhar Bhati, Saurabhchand Rama Murty, K. Sri Department of Electrical Engineering Indian Institute of Technology Hyderabad India Center for Language and Speech Processing Johns Hopkins University United States
Speaking rate is an important attribute of the speech signal which plays a crucial role in the performance of automatic speech processing systems. In this paper, we propose to estimate the speaking rate by segmenting ... 详细信息
来源: 评论
How phonotactics affect multilingual and zero-shot ASR performance
arXiv
收藏 引用
arXiv 2020年
作者: Feng, Siyuan Zelasko, Piotr Moro-Velázquez, Laureano Abavisani, Ali Hasegawa-Johnson, Mark Scharenborg, Odette Dehak, Najim Multimedia Computing Group Delft University of Technology Delft Netherlands Center for Language and Speech Processing United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign IL United States
The idea of combining multiple languages’ recordings to train a single automatic speech recognition (ASR) model brings the promise of the emergence of universal speech representation. Recently, a Transformer encoder-... 详细信息
来源: 评论