咨询与建议

限定检索结果

文献类型

  • 267 篇 会议
  • 155 篇 期刊文献

馆藏范围

  • 422 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 282 篇 工学
    • 184 篇 计算机科学与技术...
    • 164 篇 软件工程
    • 111 篇 信息与通信工程
    • 28 篇 生物工程
    • 27 篇 电子科学与技术(可...
    • 24 篇 电气工程
    • 23 篇 控制科学与工程
    • 21 篇 仪器科学与技术
    • 19 篇 化学工程与技术
    • 11 篇 机械工程
    • 8 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 5 篇 建筑学
    • 4 篇 土木工程
    • 3 篇 材料科学与工程(可...
  • 176 篇 理学
    • 137 篇 物理学
    • 56 篇 数学
    • 31 篇 生物学
    • 19 篇 化学
    • 16 篇 统计学(可授理学、...
    • 8 篇 系统科学
  • 44 篇 管理学
    • 37 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 11 篇 法学
    • 11 篇 社会学
  • 8 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 7 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 4 篇 教育学
    • 4 篇 教育学
  • 3 篇 农学
  • 2 篇 艺术学

主题

  • 59 篇 speech recogniti...
  • 52 篇 training
  • 33 篇 acoustics
  • 31 篇 speech
  • 20 篇 speech processin...
  • 19 篇 feature extracti...
  • 18 篇 hidden markov mo...
  • 18 篇 signal processin...
  • 16 篇 computational mo...
  • 15 篇 conferences
  • 14 篇 speech enhanceme...
  • 13 篇 predictive model...
  • 13 篇 decoding
  • 12 篇 machine translat...
  • 11 篇 speech synthesis
  • 10 篇 training data
  • 10 篇 neural networks
  • 10 篇 data models
  • 9 篇 transformers
  • 9 篇 self-supervised ...

机构

  • 71 篇 national enginee...
  • 51 篇 human language t...
  • 46 篇 center for langu...
  • 31 篇 human language t...
  • 21 篇 center for langu...
  • 21 篇 center for langu...
  • 13 篇 center for langu...
  • 11 篇 iflytek research
  • 10 篇 center for langu...
  • 9 篇 ict cluster sing...
  • 9 篇 human language t...
  • 8 篇 national enginee...
  • 8 篇 center for langu...
  • 8 篇 human language t...
  • 7 篇 center for langu...
  • 7 篇 human language t...
  • 7 篇 university of sc...
  • 7 篇 xiaomi corp.
  • 6 篇 university of sc...
  • 6 篇 state key labora...

作者

  • 49 篇 ling zhen-hua
  • 47 篇 khudanpur sanjee...
  • 35 篇 dehak najim
  • 32 篇 ai yang
  • 29 篇 sanjeev khudanpu...
  • 23 篇 zhen-hua ling
  • 23 篇 dredze mark
  • 19 篇 povey daniel
  • 19 篇 yang ai
  • 18 篇 villalba jesús
  • 18 篇 van durme benjam...
  • 18 篇 daniel povey
  • 17 篇 post matt
  • 16 篇 hermansky hynek
  • 16 篇 lu ye-xin
  • 15 篇 zelasko piotr
  • 14 篇 du hui-peng
  • 13 篇 raj desh
  • 13 篇 gu jia-chen
  • 13 篇 watanabe shinji

语言

  • 344 篇 英文
  • 78 篇 其他
  • 2 篇 中文
检索条件"机构=Center for Language and Speech Processing & Human Language Technology"
422 条 记 录,以下是211-220 订阅
排序:
Probing the Information Encoded in X-Vectors
Probing the Information Encoded in X-Vectors
收藏 引用
IEEE Workshop on Automatic speech Recognition and Understanding
作者: Desh Raj David Snyder Daniel Povey Sanjeev Khudanpur Center for Language and Speech Processing & Human Language Technology Center of Excellence The Johns Hopkins University Baltimore MD USA
Deep neural network based speaker embeddings, such as x-vectors, have been shown to perform well in text-independent speaker recognition/verification tasks. In this paper, we use simple classifiers to investigate the ... 详细信息
来源: 评论
Using ASR methods for OCR  15
Using ASR methods for OCR
收藏 引用
15th IAPR International Conference on Document Analysis and Recognition, ICDAR 2019
作者: Arora, Ashish Garcia, Paola Watanabe, Shinji Manohar, Vimal Shao, Yiwen Khudanpur, Sanjeev Chang, Chun Chieh Rekabdar, Babak Babaali, Bagher Povey, Daniel Etter, David Raj, Desh Hadian, Hossein Trmal, Jan Center for Language and Speech Processing Johns Hopkins University Baltimore United States Human Language Technology Center of Excellence Johns Hopkins University Baltimore United States Department of Computer Engineering Sharif University of Technology Iran School of Mathematics Statistics and Computer Sciences College of Science University of Tehran Iran
Hybrid deep neural network hidden Markov models (DNN-HMM) have achieved impressive results on large vocabulary continuous speech recognition (LVCSR) tasks. However, the recent approaches using DNN-HMM models are not e... 详细信息
来源: 评论
Approaches to Evaluate Parkinsonian speech Using Artificial Models  1st
Approaches to Evaluate Parkinsonian Speech Using Artificial ...
收藏 引用
1st Automatic Assessment of Parkinsonian speech Workshop, AAPS 2019
作者: Godino-Llorente, J.I. Moro-Velázquez, L. Gómez-García, J.A. Choi, Jeung-Yoon Dehak, N. Shattuck-Hufnagel, S. Theory and Communications Department Universidad Politécnica de Madrid C/ Nikola Tesla s/n Madrid28031 Spain Center for Language and Speech Processing Johns Hopkins University 3400 North Charles Street BaltimoreMD21218-2680 United States Speech Communication Group Massachusetts Institute of Technology 50 Vassar St. CambridgeMA02139-4307 United States
Our preliminary data and experiments show the potentiality of the artificial intelligence techniques to identify Parkinson’s disease and to assess its extent using the information extracted from the speech. Our concl... 详细信息
来源: 评论
Zero-Shot Pronunciation Lexicons for Cross-language Acoustic Model Transfer
Zero-Shot Pronunciation Lexicons for Cross-Language Acoustic...
收藏 引用
IEEE Workshop on Automatic speech Recognition and Understanding
作者: Matthew Wiesner Oliver Adams David Yarowsky Jan Trmal Sanjeev Khudanpur Center for Language and Speech Processing The Johns Hopkins University USA Human Language Technology Center of Excellence The Johns Hopkins University USA
Existing acoustic models can be transferred to any language with a pronunciation lexicon (lexicon) that uses the same set of sub-word units as in training. Unfortunately such lexicons are not readily available in many... 详细信息
来源: 评论
Analysis of Robustness of Deep Single-Channel speech Separation Using Corpora Constructed From Multiple Domains
Analysis of Robustness of Deep Single-Channel Speech Separat...
收藏 引用
IEEE Workshop on Applications of Signal processing to Audio and Acoustics
作者: Matthew Maciejewski Gregory Sell Yusuke Fujita Leibny Paola Garcia-Perera Shinji Watanabe Sanjeev Khudanpur Center for Language and Speech Processing The Johns Hopkins University USA Human Language Technology Center of Excellence The Johns Hopkins University USA
Deep-learning based single-channel speech separation has been studied with great success, though evaluations have typically been limited to relatively controlled environments based on clean, near-field, and read speec... 详细信息
来源: 评论
Probing the information encoded in x-vectors
arXiv
收藏 引用
arXiv 2019年
作者: Raj, Desh Snyder, David Povey, Daniel Khudanpur, Sanjeev Center for Language and Speech Processing & Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21218 United States
Deep neural network based speaker embeddings, such as x-vectors, have been shown to perform well in text-independent speaker recognition/verification tasks. In this paper, we use simple classifiers to investigate the ... 详细信息
来源: 评论
Spoken language Recognition using X-vectors
Spoken Language Recognition using X-vectors
收藏 引用
2018 Speaker and language Recognition Workshop, ODYSSEY 2018
作者: Snyder, David Garcia-Romero, Daniel McCree, Alan Sell, Gregory Povey, Daniel Khudanpur, Sanjeev Center for Language and Speech Processing Human Language Technology Center of Excellence The Johns Hopkins University United States
In this paper, we apply x-vectors to the task of spoken language recognition. This framework consists of a deep neural network that maps sequences of speech features to fixed-dimensional embeddings, called x-vectors. ... 详细信息
来源: 评论
An Empirical Study of Transformer-Based Neural language Model Adaptation
An Empirical Study of Transformer-Based Neural Language Mode...
收藏 引用
IEEE International Conference on Acoustics, speech and Signal processing
作者: Ke Li Zhe Liu Tianxing He Hongzhao Huang Fuchun Peng Daniel Povey Sanjeev Khudanpur Facebook AI Menlo Park CA USA Massachusetts Institute of Technology Cambridge MA USA Center for Language and Speech Processing Johns Hopkins University Baltimore MD USA
We explore two adaptation approaches of deep Transformer based neural language models (LMs) for automatic speech recognition. The first approach is a pretrain-finetune framework, where we first pretrain a Transformer ...
来源: 评论
Exploring methods for the automatic detection of errors in manual transcription
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Xiaofei Yang, Jinyi Li, Ruizhi Sadhu, Samik Hermansky, Hynek Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
Quality of data plays an important role in most deep learning tasks. In the speech community, transcription of speech recording is indispensable. Since the transcription is usually generated artificially, automaticall... 详细信息
来源: 评论
Performance monitoring for end-to-end speech recognition
arXiv
收藏 引用
arXiv 2019年
作者: Li, Ruizhi Sell, Gregory Hermansky, Hynek Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
Measuring performance of an automatic speech recognition (ASR) system without ground-truth could be beneficial in many scenarios, especially with data from unseen domains, where performance can be highly inconsistent.... 详细信息
来源: 评论