咨询与建议

限定检索结果

文献类型

  • 267 篇 会议
  • 155 篇 期刊文献

馆藏范围

  • 422 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 282 篇 工学
    • 184 篇 计算机科学与技术...
    • 164 篇 软件工程
    • 111 篇 信息与通信工程
    • 28 篇 生物工程
    • 27 篇 电子科学与技术(可...
    • 24 篇 电气工程
    • 23 篇 控制科学与工程
    • 21 篇 仪器科学与技术
    • 19 篇 化学工程与技术
    • 11 篇 机械工程
    • 8 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 5 篇 建筑学
    • 4 篇 土木工程
    • 3 篇 材料科学与工程(可...
  • 176 篇 理学
    • 137 篇 物理学
    • 56 篇 数学
    • 31 篇 生物学
    • 19 篇 化学
    • 16 篇 统计学(可授理学、...
    • 8 篇 系统科学
  • 44 篇 管理学
    • 37 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 11 篇 法学
    • 11 篇 社会学
  • 8 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 7 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 4 篇 教育学
    • 4 篇 教育学
  • 3 篇 农学
  • 2 篇 艺术学

主题

  • 59 篇 speech recogniti...
  • 52 篇 training
  • 33 篇 acoustics
  • 31 篇 speech
  • 20 篇 speech processin...
  • 19 篇 feature extracti...
  • 18 篇 hidden markov mo...
  • 18 篇 signal processin...
  • 16 篇 computational mo...
  • 15 篇 conferences
  • 14 篇 speech enhanceme...
  • 13 篇 predictive model...
  • 13 篇 decoding
  • 12 篇 machine translat...
  • 11 篇 speech synthesis
  • 10 篇 training data
  • 10 篇 neural networks
  • 10 篇 data models
  • 9 篇 transformers
  • 9 篇 self-supervised ...

机构

  • 71 篇 national enginee...
  • 51 篇 human language t...
  • 46 篇 center for langu...
  • 31 篇 human language t...
  • 21 篇 center for langu...
  • 21 篇 center for langu...
  • 13 篇 center for langu...
  • 11 篇 iflytek research
  • 10 篇 center for langu...
  • 9 篇 ict cluster sing...
  • 9 篇 human language t...
  • 8 篇 national enginee...
  • 8 篇 center for langu...
  • 8 篇 human language t...
  • 7 篇 center for langu...
  • 7 篇 human language t...
  • 7 篇 university of sc...
  • 7 篇 xiaomi corp.
  • 6 篇 university of sc...
  • 6 篇 state key labora...

作者

  • 49 篇 ling zhen-hua
  • 47 篇 khudanpur sanjee...
  • 35 篇 dehak najim
  • 32 篇 ai yang
  • 29 篇 sanjeev khudanpu...
  • 23 篇 zhen-hua ling
  • 23 篇 dredze mark
  • 19 篇 povey daniel
  • 19 篇 yang ai
  • 18 篇 villalba jesús
  • 18 篇 van durme benjam...
  • 18 篇 daniel povey
  • 17 篇 post matt
  • 16 篇 hermansky hynek
  • 16 篇 lu ye-xin
  • 15 篇 zelasko piotr
  • 14 篇 du hui-peng
  • 13 篇 raj desh
  • 13 篇 gu jia-chen
  • 13 篇 watanabe shinji

语言

  • 344 篇 英文
  • 78 篇 其他
  • 2 篇 中文
检索条件"机构=Center for Language and Speech Processing & Human Language Technology"
422 条 记 录,以下是61-70 订阅
排序:
APCodec: A Neural Audio Codec with Parallel Amplitude and Phase Spectrum Encoding and Decoding
arXiv
收藏 引用
arXiv 2024年
作者: Ai, Yang Jiang, Xiao-Hang Lu, Ye-Xin Du, Hui-Peng Ling, Zhen-Hua National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei230027 China
This paper introduces a novel neural audio codec targeting high waveform sampling rates and low bitrates named APCodec, which seamlessly integrates the strengths of parametric codecs and waveform codecs. The APCodec r... 详细信息
来源: 评论
ADAPTING SELF-SUPERVISED MODELS TO MULTI-TALKER speech RECOGNITION USING SPEAKER EMBEDDINGS
arXiv
收藏 引用
arXiv 2022年
作者: Huang, Zili Raj, Desh García, Paola Khudanpur, Sanjeev Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University Baltimore United States
Self-supervised learning (SSL) methods which learn representations of data without explicit supervision have gained popularity in speech-processing tasks, particularly for single-talker applications. However, these mo... 详细信息
来源: 评论
Towards High-Quality and Efficient speech Bandwidth Extension with Parallel Amplitude and Phase Prediction
arXiv
收藏 引用
arXiv 2024年
作者: Lu, Ye-Xin Ai, Yang Du, Hui-Peng Ling, Zhen-Hua National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei230027 China
speech bandwidth extension (BWE) refers to widening the frequency bandwidth range of speech signals, enhancing the speech quality towards brighter and fuller. This paper proposes a generative adversarial network (GAN)... 详细信息
来源: 评论
Aligning Noisy-Clean speech Pairs at Feature and Embedding Levels for Learning Noise-Invariant Speaker Representations
Aligning Noisy-Clean Speech Pairs at Feature and Embedding L...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Zuoliang Li Yang Ai Jie Zhang Shengyu Peng Yu Guan Bin Gu Wu Guo The National Engineering Research Center for Speech and Language Information Processing (NERC-SLIP) University of Science and Technology of China (USTC) Hefei China
In this paper, we propose a noise-invariant speaker representation learning (SRL) approach by aligning noisy-clean speech pairs at both the feature and embedding levels for model training. Specifically, we first const... 详细信息
来源: 评论
Recursive Feature Learning from Pre-Trained Models for Spoofing speech Detection
Recursive Feature Learning from Pre-Trained Models for Spoof...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Yu Guan Yang Ai Zuoliang Li Shengyu Peng Wu Guo National Engineering Research Center for Speech and Language Information Processing (NERC-SLIP) University of Science and Technology of China (USTC) Hefei China
It was recently revealed that using features extracted from pre-trained models can achieve much better performance than using conventional hand-crafted acoustic features for spoofing speech detection. In this paper, w... 详细信息
来源: 评论
CASC-XVC: Zero-Shot Cross-Lingual Voice Conversion with Content Accordant and Speaker Contrastive Losses
CASC-XVC: Zero-Shot Cross-Lingual Voice Conversion with Cont...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Han-Jie Guo Hui-Peng Du Zheng-Yan Sheng Li-Ping Chen Yang Ai Zhen-Hua Ling National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei P.R.China
Cross-lingual voice conversion (XVC) is a technology that modifies speaker identity while preserving linguistic content in scenarios where the source and target speakers use different languages. Previous non-parallel ... 详细信息
来源: 评论
A Study of Multi-Scale Feature Learning From Pre-Trained Models on Speaker Verification
A Study of Multi-Scale Feature Learning From Pre-Trained Mod...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Shengyu Peng Wu Guo Jie Zhang Zuoliang Li Yu Guan Bin Gu Yang Ai National Engineering Research Center for Speech and Language Information Processing (NERC-SLIP) University of Science and Technology of China (USTC) Hefei China
In this paper, a multi-scale feature fusion paradigm is proposed to fully exploit the power of the pre-trained models for text-independent speaker verification. It contains a front-end feature extractor and an enhance... 详细信息
来源: 评论
KhmerFormer: Multi-Scale CNNs-Transformer with External Attention for Ancient Khmer Palm Leaf Isolated Glyph Classification
KhmerFormer: Multi-Scale CNNs-Transformer with External Atte...
收藏 引用
Asia-Pacific Signal and Information processing Association Annual Summit and Conference (APSIPA)
作者: Nimol Thuon Jun Du National Engineering Research Center of Speech and Language Information Processing (NERC-SLIP) University of Science and Technology of China Hefei China
Ancient Khmer palm leaf manuscripts are invaluable cultural artifacts in Southeast Asia, especially in Cambodia. The preservation and study of these manuscripts are hindered by their complex glyph structures and the s... 详细信息
来源: 评论
A Composite Predictive-Generative Approach to Monaural Universal speech Enhancement
IEEE Transactions on Audio, Speech and Language Processing
收藏 引用
IEEE Transactions on Audio, speech and language processing 2025年 33卷 2312-2325页
作者: Jie Zhang Haoyin Yan Xiaofei Li National Engineering Research Center for Speech and Language Information Processing (NERC-SLIP) University of Science and Technology of China (USTC) Hefei China School of Engineering Westlake University Hangzhou China
It is promising to design a single model that can suppress various distortions and improve speech quality, i.e., universal speech enhancement (USE). Compared to supervised learning-based predictive methods, diffusion-... 详细信息
来源: 评论
Denoising-and-Dereverberation Hierarchical Neural Vocoder for Statistical Parametric speech Synthesis
Denoising-and-Dereverberation Hierarchical Neural Vocoder fo...
收藏 引用
作者: Ai, Yang Ling, Zhen-Hua Wu, Wei-Lu Li, Ang University of Science and Technology of China National Engineering Research Center of Speech and Language Information Processing Hefei230027 China National University of Defense Technology Hefei230037 China
This paper presents a denoising and dereverberation hierarchical neural vocoder (DNR-HiNet) to convert noisy and reverberant acoustic features into clean speech waveforms. The DNR-HiNet vocoder is built by modifying t... 详细信息
来源: 评论