咨询与建议

限定检索结果

文献类型

  • 528 篇 会议
  • 297 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 828 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 520 篇 工学
    • 387 篇 计算机科学与技术...
    • 336 篇 软件工程
    • 142 篇 信息与通信工程
    • 56 篇 生物工程
    • 45 篇 控制科学与工程
    • 40 篇 电子科学与技术(可...
    • 35 篇 仪器科学与技术
    • 33 篇 化学工程与技术
    • 30 篇 电气工程
    • 21 篇 生物医学工程(可授...
    • 16 篇 机械工程
    • 16 篇 光学工程
    • 7 篇 建筑学
    • 6 篇 材料科学与工程(可...
  • 291 篇 理学
    • 167 篇 物理学
    • 118 篇 数学
    • 62 篇 生物学
    • 55 篇 统计学(可授理学、...
    • 31 篇 化学
    • 18 篇 系统科学
  • 120 篇 管理学
    • 79 篇 图书情报与档案管...
    • 45 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 15 篇 法学
    • 13 篇 社会学
  • 15 篇 医学
    • 13 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 12 篇 文学
    • 8 篇 中国语言文学
    • 8 篇 外国语言文学
  • 10 篇 农学
    • 7 篇 作物学
  • 4 篇 教育学
  • 3 篇 经济学
  • 3 篇 艺术学
  • 1 篇 军事学

主题

  • 77 篇 speech recogniti...
  • 73 篇 training
  • 50 篇 acoustics
  • 46 篇 speech processin...
  • 44 篇 speech
  • 33 篇 hidden markov mo...
  • 31 篇 signal processin...
  • 29 篇 feature extracti...
  • 26 篇 decoding
  • 23 篇 speech enhanceme...
  • 21 篇 computational mo...
  • 20 篇 speech synthesis
  • 20 篇 linguistics
  • 19 篇 predictive model...
  • 18 篇 data models
  • 17 篇 neural networks
  • 17 篇 natural language...
  • 16 篇 accuracy
  • 15 篇 conferences
  • 15 篇 training data

机构

  • 70 篇 national enginee...
  • 55 篇 school of comput...
  • 47 篇 audio speech and...
  • 42 篇 beijing engineer...
  • 27 篇 department of co...
  • 25 篇 center for langu...
  • 21 篇 department of co...
  • 18 篇 mainlp center fo...
  • 18 篇 department of co...
  • 15 篇 audio speech and...
  • 14 篇 iflytek research
  • 14 篇 national enginee...
  • 12 篇 munich
  • 11 篇 department of co...
  • 10 篇 center for infor...
  • 10 篇 ict cluster sing...
  • 10 篇 audio speech and...
  • 9 篇 center for infor...
  • 9 篇 department of co...
  • 9 篇 center for speec...

作者

  • 71 篇 lei xie
  • 54 篇 ling zhen-hua
  • 37 篇 huang heyan
  • 32 篇 ai yang
  • 23 篇 plank barbara
  • 21 篇 zhen-hua ling
  • 18 篇 zheng thomas fan...
  • 18 篇 yarowsky david
  • 18 篇 thomas fang zhen...
  • 18 篇 yang ai
  • 17 篇 wang dong
  • 17 篇 heyan huang
  • 17 篇 khudanpur sanjee...
  • 16 篇 lu ye-xin
  • 15 篇 pengcheng guo
  • 15 篇 gu jia-chen
  • 15 篇 van der goot rob
  • 14 篇 du jun
  • 14 篇 mao xian-ling
  • 14 篇 xie lei

语言

  • 739 篇 英文
  • 84 篇 其他
  • 8 篇 中文
检索条件"机构=Center for Language and Speech Processing and Computer Science"
828 条 记 录,以下是111-120 订阅
排序:
Denoising-and-Dereverberation Hierarchical Neural Vocoder for Statistical Parametric speech Synthesis
Denoising-and-Dereverberation Hierarchical Neural Vocoder fo...
收藏 引用
作者: Ai, Yang Ling, Zhen-Hua Wu, Wei-Lu Li, Ang University of Science and Technology of China National Engineering Research Center of Speech and Language Information Processing Hefei230027 China National University of Defense Technology Hefei230037 China
This paper presents a denoising and dereverberation hierarchical neural vocoder (DNR-HiNet) to convert noisy and reverberant acoustic features into clean speech waveforms. The DNR-HiNet vocoder is built by modifying t... 详细信息
来源: 评论
Lightweight Audio-Visual Wake Word Spotting with Diverse Acoustic Knowledge Distillation
收藏 引用
IEEE Transactions on Circuits and Systems for Video Technology 2025年
作者: Li, Ke-Wei Chen, Hang Du, Jun Zhou, Heng-Shun Siniscalchi, Sabato Marco Niu, Shu-Tong Xiong, Shi-Fu University of Science and Technology of China National Engineering Research Center of Speech and Language Information Processing Anhui Hefei China IFlytek Research Anhui Hefei China University of Palermo Italy
Audio-Visual Wake Word Spotting (AVWWS) aims to accurately detect user-defined keywords by leveraging the complementary nature of different modalities in challenging acoustic environments. However, two primary challen... 详细信息
来源: 评论
MLCA-AVSR: Multi-Layer Cross Attention Fusion Based Audio-Visual speech Recognition
MLCA-AVSR: Multi-Layer Cross Attention Fusion Based Audio-Vi...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: He Wang Pengcheng Guo Pan Zhou Lei Xie Audio Speech and Language Processing Group (ASLP@NPU) School of Computer Science Northwestern Polytechnical University Xian China Space AI Li Auto
While automatic speech recognition (ASR) systems degrade significantly in noisy environments, audio-visual speech recognition (AVSR) systems aim to complement the audio stream with noise-invariant visual cues and impr...
来源: 评论
Voice Attribute Editing with Text Prompt
arXiv
收藏 引用
arXiv 2024年
作者: Sheng, Zhengyan Ai, Yang Liu, Li-Juan Pan, Jia Ling, Zhen-Hua National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei China iFLYTEK Research Hefei China
Despite recent advancements in speech generation with text prompt providing control over speech style, voice attributes in synthesized speech remain elusive and challenging to control. This paper introduces a novel ta... 详细信息
来源: 评论
APNet2: High-quality and High-efficiency Neural Vocoder with Direct Prediction of Amplitude and Phase Spectra
arXiv
收藏 引用
arXiv 2023年
作者: Du, Hui-Peng Lu, Ye-Xin Ai, Yang Ling, Zhen-Hua National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei China
In our previous work, we proposed a neural vocoder called APNet, which directly predicts speech amplitude and phase spectra with a 5 ms frame shift in parallel from the input acoustic features, and then reconstructs t... 详细信息
来源: 评论
Optimizing Dysarthria Wake-Up Word Spotting: an End-to-End Approach For SLT 2024 LRDWWS Challenge
Optimizing Dysarthria Wake-Up Word Spotting: an End-to-End A...
收藏 引用
IEEE Spoken language Technology Workshop
作者: Shuiyun Liu Yuxiang Kong Pengcheng Guo Weiji Zhuang Peng Gao Yujun Wang Lei Xie Audio Speech and Language Processing Group (ASLP@NPU) School of Computer Science Northwestern Polytechnical University Xi’an China Xiaomi Inc. China
speech has emerged as a widely embraced user interface across diverse applications. However, for individuals with dysarthria, the inherent variability in their speech poses significant challenges. This paper presents ... 详细信息
来源: 评论
Stage-Wise and Prior-Aware Neural speech Phase Prediction
Stage-Wise and Prior-Aware Neural Speech Phase Prediction
收藏 引用
IEEE Spoken language Technology Workshop
作者: Fei Liu Yang Ai Hui-Peng Du Ye-Xin Lu Rui-Chen Zheng Zhen-Hua Ling National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei P. R. China
This paper proposes a novel Stage-wise and Prior-aware Neural speech Phase Prediction (SP-NSPP) model, which predicts the phase spectrum from input amplitude spectrum by two-stage neural networks. In the initial prior... 详细信息
来源: 评论
Source-Filter-Based Generative Adversarial Neural Vocoder for High Fidelity speech Synthesis
arXiv
收藏 引用
arXiv 2023年
作者: Lu, Ye-Xin Ai, Yang Ling, Zhen-Hua National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei China
This paper proposes a source-filter-based generative adversarial neural vocoder named SF-GAN, which achieves high-fidelity waveform generation from input acoustic features by introducing F0-based source excitation sig... 详细信息
来源: 评论
ZERO-SHOT PERSONALIZED LIP-TO-speech SYNTHESIS WITH FACE IMAGE BASED VOICE CONTROL
arXiv
收藏 引用
arXiv 2023年
作者: Sheng, Zheng-Yan Ai, Yang Ling, Zhen-Hua National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei China
Lip-to-speech (Lip2speech) synthesis, which predicts corresponding speech from talking face images, has witnessed significant progress with various models and training strategies in a series of independent studies. Ho... 详细信息
来源: 评论
DIFFUSIA: A Spiral Interaction Architecture for Encoder-Decoder Text Diffusion
arXiv
收藏 引用
arXiv 2023年
作者: Tan, Chao-Hong Gu, Jia-Chen Ling, Zhen-Hua National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei China
Diffusion models have emerged as the new state-of-the-art family of deep generative models, and their promising potentials for text generation have recently attracted increasing attention. Existing studies mostly adop... 详细信息
来源: 评论