咨询与建议

限定检索结果

文献类型

  • 99 篇 会议
  • 64 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 164 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 96 篇 工学
    • 51 篇 计算机科学与技术...
    • 48 篇 软件工程
    • 38 篇 信息与通信工程
    • 15 篇 生物工程
    • 11 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 10 篇 电子科学与技术(可...
    • 7 篇 光学工程
    • 7 篇 化学工程与技术
    • 6 篇 仪器科学与技术
    • 6 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 动力工程及工程热...
    • 2 篇 环境科学与工程(可...
  • 74 篇 理学
    • 49 篇 物理学
    • 28 篇 数学
    • 19 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 7 篇 化学
    • 4 篇 系统科学
  • 21 篇 管理学
    • 14 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 5 篇 法学
    • 4 篇 社会学
    • 1 篇 法学
  • 5 篇 医学
    • 5 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 2 篇 药学(可授医学、理...
  • 4 篇 文学
    • 3 篇 新闻传播学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 23 篇 speech recogniti...
  • 15 篇 hidden markov mo...
  • 11 篇 speech
  • 11 篇 speech processin...
  • 9 篇 training
  • 7 篇 natural language...
  • 7 篇 computational mo...
  • 7 篇 feature extracti...
  • 6 篇 signal processin...
  • 6 篇 automatic speech...
  • 5 篇 neural networks
  • 5 篇 speech enhanceme...
  • 5 篇 acoustics
  • 5 篇 decoding
  • 4 篇 noise measuremen...
  • 4 篇 training data
  • 4 篇 vocabulary
  • 3 篇 support vector m...
  • 3 篇 lattices
  • 3 篇 reverberation

机构

  • 7 篇 department of el...
  • 7 篇 center for langu...
  • 5 篇 department of co...
  • 5 篇 center for langu...
  • 5 篇 national enginee...
  • 4 篇 iflytek research
  • 4 篇 department of el...
  • 4 篇 speechlab depart...
  • 4 篇 school of electr...
  • 3 篇 university of pe...
  • 3 篇 department of co...
  • 3 篇 vector institute...
  • 3 篇 erlangen-nürnber...
  • 3 篇 radboud institut...
  • 3 篇 department of bi...
  • 3 篇 centre for medic...
  • 3 篇 general robotics...
  • 3 篇 department of di...
  • 3 篇 university of po...
  • 3 篇 institute of aco...

作者

  • 9 篇 sanjeev khudanpu...
  • 7 篇 khudanpur sanjee...
  • 7 篇 watanabe shinji
  • 6 篇 damianos karakos
  • 6 篇 lirong dai
  • 6 篇 hui jiang
  • 5 篇 du xiaojiang
  • 5 篇 guizani mohsen
  • 5 篇 ling zhen-hua
  • 5 篇 drosatos george
  • 5 篇 zhu liehuang
  • 5 篇 sharif kashif
  • 5 篇 efraimidis pavlo...
  • 5 篇 byrne william
  • 4 篇 garcia leibny pa...
  • 4 篇 stern richard
  • 4 篇 dredze mark
  • 4 篇 novoa josé
  • 4 篇 chang xuankai
  • 4 篇 liu hexin

语言

  • 157 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Center for Language and Speech Processing and Department of Electrical and Computer Engineering"
164 条 记 录,以下是31-40 订阅
排序:
Unpaired Overwater Image Defogging Using Prior Map Guided Cycle-Consistent Generative Adversarial Network
SSRN
收藏 引用
SSRN 2024年
作者: Mo, Yaozong Li, Chaofeng Ren, Wenqi Wang, Wenwu Wu, Xiao-Jun Shanghai201306 China School of Cyber Science and Technology Sun Yat-sen University Shenzhen518000 China Center for Vision Speech and Signal Processing Department of Electrical and Electronic Engineering University of Surrey Surrey SurreyGU2 7XH United Kingdom School of Artificial Intelligence and Computer Science Jiangnan University Wuxi 214122 China
Existing image defogging approaches have made significant advancements. But their effectiveness in addressing overwater foggy images remains limited. Current methods are predominantly optimized for land scenes, which ... 详细信息
来源: 评论
Long-Term Invariant Local Features via Implicit Cross-Domain Correspondences
arXiv
收藏 引用
arXiv 2023年
作者: Pataki, Zador Altillawi, Mohammad Kanakis, Menelaos Pautrat, Rémi Shen, Fengyi Liu, Ziyuan Van Gool, Luc Pollefeys, Marc The Computer Vision and Geometry Lab Department of Computer Science ETH Zurich Switzerland The Computer Vision Center CVC-Barcelona The Intelligent Robotics Cloud Technology lab of Huawei-Munich Germany The Computer Vision Lab Department Electrical Engineering ETH Zurich Switzerland The Intelligent Robotics Cloud Technology lab of Huawei-Munich Germany The Intelligent Robotics Cloud Technology lab of Huawei-Munich Germany The Center for Processing Speech and Images KU Leuven The Computer Vision Lab ETH Zurich Switzerland
Modern learning-based visual feature extraction networks perform well in intra-domain localization, however, their performance significantly declines when image pairs are captured across long-term visual domain variat... 详细信息
来源: 评论
SAV-SE: Scene-aware Audio-Visual speech Enhancement with Selective State Space Model
arXiv
收藏 引用
arXiv 2024年
作者: Qian, Xinyuan Gao, Jiaran Zhang, Yaodan Zhang, Qiquan Liu, Hexin Garcia, Leibny Paola Li, Haizhou The School of Computer and Communication Engineering University of Science and Technology Beijing Beijing100083 China The School of Electrical Engineering and Telecommunications The University of New South Wales Sydney2052 Australia The College of Computing and Data Science Nanyang Technological University Singapore The Center for Language and Speech Processing Johns Hopkins University United States The Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong Shenzhen518172 China Shenzhen Research Institute of Big data Shenzhen51872 China
speech enhancement plays an essential role in various applications, and the integration of visual information has been demonstrated to bring substantial advantages. However, the majority of current research concentrat... 详细信息
来源: 评论
LocalViT: Analyzing Locality in Vision Transformers
LocalViT: Analyzing Locality in Vision Transformers
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Yawei Li Kai Zhang Jiezhang Cao Radu Timofte Michele Magno Luca Benini Luc Van Goo Computer Vision Lab D-ITET ETH Zurich Switzerland Center for Artificial Intelligence and Data Science (CAIDAS) University of Wurzburg Germany Center for Project-Based Learning D-ITET ETH Zurich Switzerland Integrated Systems Laboratory D-ITET ETH Zurich Switzerland Department of Electrical Electronic and Information Engineering University of Bologna Italy Processing Speech and Images (PSI) KU Leuven Belgium
The aim of this paper is to study the influence of locality mechanisms in vision transformers. Transformers originated from machine translation and are particularly good at modelling long-range dependencies within a l...
来源: 评论
ADMM-DAD NET: A DEEP UNFOLDING NETWORK FOR ANALYSIS COMPRESSED SENSING
arXiv
收藏 引用
arXiv 2021年
作者: Kouni, Vasiliki Paraskevopoulos, Georgios Rauhut, Holger Alexandropoulos, George C. Kouni, Vicky Dep. of Informatics and Telecommunications National & Kapodistrian University of Athens Greece Mathematics of Information Processing RWTH Aachen University Germany School of Electrical & Computer Engineering National Technical University of Athens Greece Institute for Language & Speech Processing Athena Research Center Athens Greece
In this paper, we propose a new deep unfolding neural network based on the ADMM algorithm for analysis Compressed Sensing. The proposed network jointly learns a redundant analysis operator for sparsification and recon... 详细信息
来源: 评论
Revisiting multi-Task learning in the deep learning era
arXiv
收藏 引用
arXiv 2020年
作者: Vandenhende, Simon Georgoulis, Stamatios Proesmans, Marc Dai, Dengxin Gool, Luc Van Center for Processing Speech and Images Department Electrical Engineering Ku Leuven Computer Vision Lab Department Electrical Engineering Eth Zurich Center for Processing Speech and Images Ku Leuven and the Computer Vision Lab Ethz
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: Training a separate neural network for each individual task. Many real-worl... 详细信息
来源: 评论
Discovering Phonetic Inventories with Crosslingual Automatic speech Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Żelasko, Piotr Feng, Siyuan Velázquez, Laureano Moro Abavisani, Ali Bhati, Saurabhchand Scharenborg, Odette Hasegawa-Johnson, Mark Dehak, Najim Center of Language and Speech Processing The Johns Hopkins University 3400 North Charles Street BaltimoreMD21218 United States Human Language Technology Center of Excellence The Johns Hopkins University 810 Wyman Park Drive BaltimoreMD21218 United States Multimedia Computing Group Delft University of Technology Van Mourik Broekmanweg 6 Delft2628 XE Netherlands Department of Electrical and Computer Engineering University of Illinois 405 N Mathews UrbanaIL61801 United States
The high cost of data acquisition makes Automatic speech Recognition (ASR) model training problematic for most existing languages, including languages that do not even have a written script, or for which the phone inv... 详细信息
来源: 评论
An asynchronous wfst-based decoder for automatic speech recognition
arXiv
收藏 引用
arXiv 2021年
作者: Lv, Hang Chen, Zhehuai Xu, Hainan Povey, Daniel Xie, Lei Khudanpur, Sanjeev School of Computer Science Northwestern Polytechnical University Xi'an China Center of Language and Speech Processing United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States Xiaomi Corporation Beijing China SpeechLab Department of Computer Science and Engineering Shanghai Jiao Tong University China
We introduce asynchronous dynamic decoder, which adopts an efficient A∗ algorithm to incorporate big language models in the onepass decoding for large vocabulary continuous speech recognition. Unlike standard one-pass... 详细信息
来源: 评论
δ-Calculus:A New Approach to Quantifying Location Privacy
收藏 引用
computers, Materials & Continua 2020年 第6期63卷 1323-1342页
作者: Lihua Yin Ran Li Jingquan Ding Xiao Li Yunchuan Guo Huibing Zhang Ang Li Cyberspace Institute of Advanced Technology Guangzhou UniversityGuangzhou510006China Institute of Information Engineering CASBeijing100093China Xinjiang Technical Institute of Physics&Chemistry Chinese Academy ScienceUrumqi830011China Key laboratory of Speech Language Information Processing of Xinjiang Urumqi830046China University of Chinese Academy of Sciences Beijing100049China Guilin University of Electronic Technology Guilin541004China Department of Electrical and Computer Engineering Duke UniversityDurham27708USA
With the rapid development of mobile wireless Internet and high-precision localization devices,location-based services(LBS)bring more convenience for people over recent *** LBS,if the original location data are direct... 详细信息
来源: 评论
Zero Resource Speaking Rate Estimation from Change Point Detection of Syllable-like Units  44
Zero Resource Speaking Rate Estimation from Change Point Det...
收藏 引用
44th IEEE International Conference on Acoustics, speech, and Signal processing, ICASSP 2019
作者: Nayak, Shekhar Bhati, Saurabhchand Rama Murty, K. Sri Department of Electrical Engineering Indian Institute of Technology Hyderabad India Center for Language and Speech Processing Johns Hopkins University United States
Speaking rate is an important attribute of the speech signal which plays a crucial role in the performance of automatic speech processing systems. In this paper, we propose to estimate the speaking rate by segmenting ... 详细信息
来源: 评论