咨询与建议

限定检索结果

文献类型

  • 315 篇 会议
  • 126 篇 期刊文献

馆藏范围

  • 441 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 236 篇 计算机科学与技术...
    • 206 篇 软件工程
    • 98 篇 信息与通信工程
    • 24 篇 生物工程
    • 17 篇 控制科学与工程
    • 17 篇 化学工程与技术
    • 16 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 农业工程
  • 165 篇 理学
    • 118 篇 物理学
    • 54 篇 数学
    • 28 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 17 篇 化学
    • 10 篇 系统科学
  • 78 篇 管理学
    • 69 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 14 篇 医学
    • 12 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 7 篇 药学(可授医学、理...
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 5 篇 教育学
  • 5 篇 农学
    • 5 篇 作物学
  • 1 篇 经济学

主题

  • 44 篇 speech recogniti...
  • 30 篇 speech
  • 30 篇 training
  • 18 篇 acoustics
  • 14 篇 machine translat...
  • 12 篇 decoding
  • 12 篇 social networkin...
  • 12 篇 speaker recognit...
  • 11 篇 computational mo...
  • 11 篇 semantics
  • 10 篇 conferences
  • 10 篇 hidden markov mo...
  • 9 篇 speech processin...
  • 9 篇 computational li...
  • 9 篇 embeddings
  • 8 篇 training data
  • 8 篇 feature extracti...
  • 8 篇 natural language...
  • 8 篇 pipelines
  • 7 篇 lattices

机构

  • 88 篇 human language t...
  • 54 篇 human language t...
  • 43 篇 center for langu...
  • 21 篇 center for langu...
  • 20 篇 human language t...
  • 20 篇 human language t...
  • 18 篇 center for langu...
  • 15 篇 human language t...
  • 13 篇 center for langu...
  • 12 篇 human language t...
  • 11 篇 human language t...
  • 10 篇 johns hopkins un...
  • 9 篇 johns hopkins un...
  • 8 篇 human language t...
  • 7 篇 human language t...
  • 7 篇 department of co...
  • 7 篇 xiaomi corp.
  • 6 篇 computer and inf...
  • 6 篇 xiaomi corporati...
  • 6 篇 center for langu...

作者

  • 64 篇 dredze mark
  • 50 篇 khudanpur sanjee...
  • 43 篇 van durme benjam...
  • 30 篇 dehak najim
  • 27 篇 sanjeev khudanpu...
  • 21 篇 post matt
  • 20 篇 mcnamee paul
  • 20 篇 hermansky hynek
  • 20 篇 callison-burch c...
  • 19 篇 villalba jesús
  • 18 篇 povey daniel
  • 16 篇 duh kevin
  • 16 篇 mayfield james
  • 15 篇 zelasko piotr
  • 15 篇 daniel povey
  • 15 篇 watanabe shinji
  • 14 篇 wiesner matthew
  • 14 篇 andrews nicholas
  • 13 篇 paul michael j.
  • 13 篇 mccree alan

语言

  • 432 篇 英文
  • 9 篇 其他
检索条件"机构=Center for Language and Speech Processing and Human Language Technology Center of Excellence"
441 条 记 录,以下是91-100 订阅
排序:
Bilingual Lexicon Induction for Low-Resource languages using Graph Matching via Optimal Transport
Bilingual Lexicon Induction for Low-Resource Languages using...
收藏 引用
2022 Conference on Empirical Methods in Natural language processing, EMNLP 2022
作者: Marchisio, Kelly Saad-Eldin, Ali Duh, Kevin Priebe, Carey Koehn, Philipp Department of Computer Science Johns Hopkins University United States Department of Applied Mathematics and Statistics Johns Hopkins University United States Department of Biomedical Engineering Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
Bilingual lexicons form a critical component of various natural language processing applications, including unsupervised and semisupervised machine translation and crosslingual information retrieval. We improve biling... 详细信息
来源: 评论
Unsupervised acoustic unit discovery by leveraging a language-independent subword discriminative feature representation
arXiv
收藏 引用
arXiv 2021年
作者: Feng, Siyuan Zelasko, Piotr Moro-Velázquez, Laureano Scharenborg, Odette Multimedia Computing Group Delft University of Technology Delft Netherlands Center for Language and Speech Processing Johns Hopkins University BaltimoreMD United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
This paper tackles automatically discovering phone-like acoustic units (AUD) from unlabeled speech data. Past studies usually proposed single-step approaches. We propose a two-stage approach: the first stage learns a ... 详细信息
来源: 评论
A parallelizable lattice rescoring strategy with neural language models
arXiv
收藏 引用
arXiv 2021年
作者: Li, Ke Povey, Daniel Khudanpur, Sanjeev Center for Language and Speech Processing The Johns Hopkins University BaltimoreMD21218 United States Human Language Technology Center of Excellence The Johns Hopkins University BaltimoreMD21218 United States Xiaomi Corp. Beijing China
This paper proposes a parallel computation strategy and a posterior-based lattice expansion algorithm for efficient lattice rescoring with neural language models (LMs) for automatic speech recognition. First, lattices... 详细信息
来源: 评论
CTC Alignments Improve Autoregressive Translation
arXiv
收藏 引用
arXiv 2022年
作者: Yan, Brian Dalmia, Siddharth Higuchi, Yosuke Neubig, Graham Metze, Florian Black, Alan W. Watanabe, Shinji Language Technologies Institute Carnegie Mellon University United States Department of Communications and Computer Engineering Waseda University Japan Human Language Technology Center of Excellence Johns Hopkins University United States
Connectionist Temporal Classification (CTC) is a widely used approach for automatic speech recognition (ASR) that performs conditionally independent monotonic alignment. However for translation, CTC exhibits clear lim... 详细信息
来源: 评论
Do Text-to-Text Multi-Task Learners Suffer from Task Conflict?
arXiv
收藏 引用
arXiv 2022年
作者: Mueller, David Andrews, Nicholas Dredze, Mark Department of Computer Science Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
Traditional multi-task learning architectures train a single model across multiple tasks through a shared encoder followed by task-specific decoders. Learning these models often requires specialized training algorithm... 详细信息
来源: 评论
Sources of Transfer in Multilingual Named Entity Recognition
arXiv
收藏 引用
arXiv 2020年
作者: Mueller, David Andrews, Nicholas Dredze, Mark Center for Language and Speech Processing Johns Hopkins University Human Language Technology Center of Excellence Johns Hopkins University
Named-entities are inherently multilingual, and annotations in any given language may be limited. This motivates us to consider polyglot named-entity recognition (NER), where one model is trained using annotated data ...
来源: 评论
An Asynchronous WFST-Based Decoder for Automatic speech Recognition
An Asynchronous WFST-Based Decoder for Automatic Speech Reco...
收藏 引用
IEEE International Conference on Acoustics, speech and Signal processing
作者: Hang Lv Zhehuai Chen Hainan Xu Daniel Povey Lei Xie Sanjeev Khudanpur Audio Speech and Language Processing Lab (ASLP@NPU) School of Computer Science Northwestern Polytechnical University Xi’an China Center of Language and Speech Processing Johns Hopkins University Baltimore MD USA Shanghai Jiao Tong University Xiaomi Corporation Beijing China Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD USA
We introduce asynchronous dynamic decoder, which adopts an efficient A~* algorithm to incorporate big language models in the one-pass decoding for large vocabulary continuous speech recognition. Unlike standard one-pa... 详细信息
来源: 评论
DRAWING ORDER RECOVERY FOR HANDWRITING CHINESE CHARACTERS  44
DRAWING ORDER RECOVERY FOR HANDWRITING CHINESE CHARACTERS
收藏 引用
44th IEEE International Conference on Acoustics, speech and Signal processing (ICASSP)
作者: Zhao, Bocheng Yang, Minghao Tao, Jianhua Center for Language and Speech Processing The Johns Hopkins University Baltimore USA Human Language Technology Center of Excellence The Johns Hopkins University Baltimore USA
Recover drawing orders from a Chinese handwriting image is a challenge issue. Most of English drawing order recovery( DOR) methods perform unsatisfactorily in Chinese. This paper proposes a novel image-to-sequence alg... 详细信息
来源: 评论
Self-Expressing Autoencoders for Unsupervised Spoken Term Discovery
arXiv
收藏 引用
arXiv 2020年
作者: Bhati, Saurabhchand Villalba, Jesús Żelasko, Piotr Dehak, Najim Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
Unsupervised spoken term discovery consists of two tasks: finding the acoustic segment boundaries and labeling acoustically similar segments with the same labels. We perform segmentation based on the assumption that t... 详细信息
来源: 评论
Learning speaker embedding from text-to-speech
arXiv
收藏 引用
arXiv 2020年
作者: Cho, Jaejin Zelasko, Piotr Villalba, Jesús Watanabe, Shinji Dehak, Najim Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
Zero-shot multi-speaker Text-to-speech (TTS) generates target speaker voices given an input text and the corresponding speaker embedding. In this work, we investigate the effectiveness of the TTS reconstruction object... 详细信息
来源: 评论