咨询与建议

限定检索结果

文献类型

  • 315 篇 会议
  • 126 篇 期刊文献

馆藏范围

  • 441 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 236 篇 计算机科学与技术...
    • 206 篇 软件工程
    • 98 篇 信息与通信工程
    • 24 篇 生物工程
    • 17 篇 控制科学与工程
    • 17 篇 化学工程与技术
    • 16 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 农业工程
  • 165 篇 理学
    • 118 篇 物理学
    • 54 篇 数学
    • 28 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 17 篇 化学
    • 10 篇 系统科学
  • 78 篇 管理学
    • 69 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 14 篇 医学
    • 12 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 7 篇 药学(可授医学、理...
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 5 篇 教育学
  • 5 篇 农学
    • 5 篇 作物学
  • 1 篇 经济学

主题

  • 44 篇 speech recogniti...
  • 30 篇 speech
  • 30 篇 training
  • 18 篇 acoustics
  • 14 篇 machine translat...
  • 12 篇 decoding
  • 12 篇 social networkin...
  • 12 篇 speaker recognit...
  • 11 篇 computational mo...
  • 11 篇 semantics
  • 10 篇 conferences
  • 10 篇 hidden markov mo...
  • 9 篇 speech processin...
  • 9 篇 computational li...
  • 9 篇 embeddings
  • 8 篇 training data
  • 8 篇 feature extracti...
  • 8 篇 natural language...
  • 8 篇 pipelines
  • 7 篇 lattices

机构

  • 88 篇 human language t...
  • 54 篇 human language t...
  • 43 篇 center for langu...
  • 21 篇 center for langu...
  • 20 篇 human language t...
  • 20 篇 human language t...
  • 18 篇 center for langu...
  • 15 篇 human language t...
  • 13 篇 center for langu...
  • 12 篇 human language t...
  • 11 篇 human language t...
  • 10 篇 johns hopkins un...
  • 9 篇 johns hopkins un...
  • 8 篇 human language t...
  • 7 篇 human language t...
  • 7 篇 department of co...
  • 7 篇 xiaomi corp.
  • 6 篇 computer and inf...
  • 6 篇 xiaomi corporati...
  • 6 篇 center for langu...

作者

  • 64 篇 dredze mark
  • 50 篇 khudanpur sanjee...
  • 43 篇 van durme benjam...
  • 30 篇 dehak najim
  • 27 篇 sanjeev khudanpu...
  • 21 篇 post matt
  • 20 篇 mcnamee paul
  • 20 篇 hermansky hynek
  • 20 篇 callison-burch c...
  • 19 篇 villalba jesús
  • 18 篇 povey daniel
  • 16 篇 duh kevin
  • 16 篇 mayfield james
  • 15 篇 zelasko piotr
  • 15 篇 daniel povey
  • 15 篇 watanabe shinji
  • 14 篇 wiesner matthew
  • 14 篇 andrews nicholas
  • 13 篇 paul michael j.
  • 13 篇 mccree alan

语言

  • 431 篇 英文
  • 10 篇 其他
检索条件"机构=Center for Language and Speech Processing and Human Language Technology Center of Excellence"
441 条 记 录,以下是101-110 订阅
排序:
Single channel far field feature enhancement for speaker verification in the wild
arXiv
收藏 引用
arXiv 2020年
作者: Nidadavolu, Phani Sankar Kataria, Saurabh Perera, Paola Garcia Villalba, Jesus Dehak, Najim Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
We investigated an enhancement and a domain adaptation approach to make speaker verification systems robust to perturbations of far-field speech. In the enhancement approach, using paired (parallel) reverberant-clean ... 详细信息
来源: 评论
Wake Word Detection with Streaming Transformers
Wake Word Detection with Streaming Transformers
收藏 引用
IEEE International Conference on Acoustics, speech and Signal processing
作者: Yiming Wang Hang Lv Daniel Povey Lei Xie Sanjeev Khudanpur Center for Language and Speech Processing Johns Hopkins University Baltimore MD USA School of Computer Science Northwestern Polytechnical University Xi’an China Xiaomi Corporation Beijing China Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD USA
Modern wake word detection systems usually rely on neural networks for acoustic modeling. Transformers has recently shown superior performance over LSTM and convolutional networks in various sequence modeling tasks wi... 详细信息
来源: 评论
Creating Multimedia Summaries Using Tweets and Videos
arXiv
收藏 引用
arXiv 2022年
作者: Andy, Anietie Liu, Siyi Ippolito, Daphne Kriz, Reno Callison-Burch, Chris Wijaya, Derry Penn Medicine University of Pennsylvania United States Human Language Technology Center of Excellence Johns Hopkins University United States Boston University United States
While popular televised events such as presidential debates or TV shows are airing, people provide commentary on them in real-time. In this paper, we propose a simple yet effective approach to combine social media com...
来源: 评论
The JHU Multi-Microphone Multi-Speaker ASR System for the CHiME-6 Challenge
arXiv
收藏 引用
arXiv 2020年
作者: Arora, Ashish Raj, Desh Subramanian, Aswin Shanmugam Li, Ke Ben-Yair, Bar Maciejewski, Matthew Zelasko, Piotr García, Paola Watanabe, Shinji Khudanpur, Sanjeev Center for Language and Speech Processing & Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21218 United States
This paper summarizes the JHU team’s efforts in tracks 1 and 2 of the CHiME-6 challenge for distant multi-microphone conversational speech diarization and recognition in everyday home environments. We explore multi-a... 详细信息
来源: 评论
MegaWika: Millions of reports and their sources across 50 diverse languages
arXiv
收藏 引用
arXiv 2023年
作者: Barham, Samuel Weller, Orion Yuan, Michelle Murray, Kenton Yarmohammadi, Mahsa Jiang, Zhengping Vashishtha, Siddharth Martin, Alexander Liu, Anqi White, Aaron Steven Boyd-Graber, Jordan Van Durme, Benjamin Human Language Technology Center of Excellence Johns Hopkins University United States Johns Hopkins University United States University of Maryland College Park United States University of Rochester United States Amazon UMD United States
To foster the development of new models for collaborative AI-assisted report generation, we introduce MegaWika, consisting of 13 million Wikipedia articles in 50 diverse languages, along with their 71 million referenc... 详细信息
来源: 评论
Non-Contrastive Self-supervised Learning for Utterance-Level Information Extraction from speech
arXiv
收藏 引用
arXiv 2022年
作者: Cho, Jaejin Villalba, Jesús Moro-Velazquez, Laureano Dehak, Najim Johns Hopkins University BaltimoreMD21218 United States The Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21218 United States
In recent studies, self-supervised pre-trained models tend to outperform supervised pre-trained models in transfer learning. In particular, self-supervised learning of utterance-level speech representation can be used... 详细信息
来源: 评论
Speaker diarization using two-pass leave-one-out Gaussian PLDA clustering of DNN embeddings
arXiv
收藏 引用
arXiv 2021年
作者: Karra, Kiran McCree, Alan Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
Many modern systems for speaker diarization, such as the recently-developed VBx approach, rely on clustering of DNN speaker embeddings followed by resegmentation. Two problems with this approach are that the DNN is no... 详细信息
来源: 评论
CopyPaste: An augmentation method for speech emotion recognition
arXiv
收藏 引用
arXiv 2020年
作者: Pappagari, Raghavendra Villalba, Jesús Zelasko, Piotr Moro-Velazquez, Laureano Dehak, Najim Center for Language and Speech Processing United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
Data augmentation is a widely used strategy for training robust machine learning models. It partially alleviates the problem of limited data for tasks like speech emotion recognition (SER), where collecting data is ex... 详细信息
来源: 评论
OOV Recovery with Efficient 2nd Pass Decoding and Open-vocabulary Word-level RNNLM Rescoring for Hybrid ASR
OOV Recovery with Efficient 2nd Pass Decoding and Open-vocab...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Xiaohui Zhang Daniel Povey Sanjeev Khudanpur Facebook AI US Center for Language and Speech Processing & Human Language Technology Center of Excellence The Johns Hopkins University Baltimore MD US
In this paper, we investigate out-of-vocabulary (OOV) word recovery in hybrid automatic speech recognition (ASR) systems, with emphasis on dynamic vocabulary expansion for both Weight Finite State Transducer (WFST)-ba...
来源: 评论
Multi-class spectral clustering with overlaps for speaker diarization
arXiv
收藏 引用
arXiv 2020年
作者: Raj, Desh Huang, Zili Khudanpur, Sanjeev Center for Language and Speech Processing United States Human Language Technology Center of Excellence The Johns Hopkins University BaltimoreMD21218 United States
This paper describes a method for overlap-aware speaker diarization. Given an overlap detector and a speaker embedding extractor, our method performs spectral clustering of segments informed by the output of the overl... 详细信息
来源: 评论