咨询与建议

限定检索结果

文献类型

  • 315 篇 会议
  • 126 篇 期刊文献

馆藏范围

  • 441 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 236 篇 计算机科学与技术...
    • 206 篇 软件工程
    • 98 篇 信息与通信工程
    • 24 篇 生物工程
    • 17 篇 控制科学与工程
    • 17 篇 化学工程与技术
    • 16 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 农业工程
  • 165 篇 理学
    • 118 篇 物理学
    • 54 篇 数学
    • 28 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 17 篇 化学
    • 10 篇 系统科学
  • 78 篇 管理学
    • 69 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 14 篇 医学
    • 12 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 7 篇 药学(可授医学、理...
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 5 篇 教育学
  • 5 篇 农学
    • 5 篇 作物学
  • 1 篇 经济学

主题

  • 44 篇 speech recogniti...
  • 30 篇 speech
  • 30 篇 training
  • 18 篇 acoustics
  • 14 篇 machine translat...
  • 12 篇 decoding
  • 12 篇 social networkin...
  • 12 篇 speaker recognit...
  • 11 篇 computational mo...
  • 11 篇 semantics
  • 10 篇 conferences
  • 10 篇 hidden markov mo...
  • 9 篇 speech processin...
  • 9 篇 computational li...
  • 9 篇 embeddings
  • 8 篇 training data
  • 8 篇 feature extracti...
  • 8 篇 natural language...
  • 8 篇 pipelines
  • 7 篇 lattices

机构

  • 88 篇 human language t...
  • 54 篇 human language t...
  • 43 篇 center for langu...
  • 21 篇 center for langu...
  • 20 篇 human language t...
  • 20 篇 human language t...
  • 18 篇 center for langu...
  • 15 篇 human language t...
  • 13 篇 center for langu...
  • 12 篇 human language t...
  • 11 篇 human language t...
  • 10 篇 johns hopkins un...
  • 9 篇 johns hopkins un...
  • 8 篇 human language t...
  • 7 篇 human language t...
  • 7 篇 department of co...
  • 7 篇 xiaomi corp.
  • 6 篇 computer and inf...
  • 6 篇 xiaomi corporati...
  • 6 篇 center for langu...

作者

  • 64 篇 dredze mark
  • 50 篇 khudanpur sanjee...
  • 43 篇 van durme benjam...
  • 30 篇 dehak najim
  • 27 篇 sanjeev khudanpu...
  • 21 篇 post matt
  • 20 篇 mcnamee paul
  • 20 篇 hermansky hynek
  • 20 篇 callison-burch c...
  • 19 篇 villalba jesús
  • 18 篇 povey daniel
  • 16 篇 duh kevin
  • 16 篇 mayfield james
  • 15 篇 zelasko piotr
  • 15 篇 daniel povey
  • 15 篇 watanabe shinji
  • 14 篇 wiesner matthew
  • 14 篇 andrews nicholas
  • 13 篇 paul michael j.
  • 13 篇 mccree alan

语言

  • 432 篇 英文
  • 9 篇 其他
检索条件"机构=Center for Language and Speech Processing and Human Language Technology Center of Excellence"
441 条 记 录,以下是141-150 订阅
排序:
Zero-Shot Pronunciation Lexicons for Cross-language Acoustic Model Transfer
Zero-Shot Pronunciation Lexicons for Cross-Language Acoustic...
收藏 引用
IEEE Workshop on Automatic speech Recognition and Understanding
作者: Matthew Wiesner Oliver Adams David Yarowsky Jan Trmal Sanjeev Khudanpur Center for Language and Speech Processing The Johns Hopkins University USA Human Language Technology Center of Excellence The Johns Hopkins University USA
Existing acoustic models can be transferred to any language with a pronunciation lexicon (lexicon) that uses the same set of sub-word units as in training. Unfortunately such lexicons are not readily available in many... 详细信息
来源: 评论
Analysis of Robustness of Deep Single-Channel speech Separation Using Corpora Constructed From Multiple Domains
Analysis of Robustness of Deep Single-Channel Speech Separat...
收藏 引用
IEEE Workshop on Applications of Signal processing to Audio and Acoustics
作者: Matthew Maciejewski Gregory Sell Yusuke Fujita Leibny Paola Garcia-Perera Shinji Watanabe Sanjeev Khudanpur Center for Language and Speech Processing The Johns Hopkins University USA Human Language Technology Center of Excellence The Johns Hopkins University USA
Deep-learning based single-channel speech separation has been studied with great success, though evaluations have typically been limited to relatively controlled environments based on clean, near-field, and read speec... 详细信息
来源: 评论
Probing the information encoded in x-vectors
arXiv
收藏 引用
arXiv 2019年
作者: Raj, Desh Snyder, David Povey, Daniel Khudanpur, Sanjeev Center for Language and Speech Processing & Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21218 United States
Deep neural network based speaker embeddings, such as x-vectors, have been shown to perform well in text-independent speaker recognition/verification tasks. In this paper, we use simple classifiers to investigate the ... 详细信息
来源: 评论
Spoken language Recognition using X-vectors
Spoken Language Recognition using X-vectors
收藏 引用
2018 Speaker and language Recognition Workshop, ODYSSEY 2018
作者: Snyder, David Garcia-Romero, Daniel McCree, Alan Sell, Gregory Povey, Daniel Khudanpur, Sanjeev Center for Language and Speech Processing Human Language Technology Center of Excellence The Johns Hopkins University United States
In this paper, we apply x-vectors to the task of spoken language recognition. This framework consists of a deep neural network that maps sequences of speech features to fixed-dimensional embeddings, called x-vectors. ... 详细信息
来源: 评论
Zero Resource Speaking Rate Estimation from Change Point Detection of Syllable-like Units  44
Zero Resource Speaking Rate Estimation from Change Point Det...
收藏 引用
44th IEEE International Conference on Acoustics, speech, and Signal processing, ICASSP 2019
作者: Nayak, Shekhar Bhati, Saurabhchand Rama Murty, K. Sri Department of Electrical Engineering Indian Institute of Technology Hyderabad India Center for Language and Speech Processing Johns Hopkins University United States
Speaking rate is an important attribute of the speech signal which plays a crucial role in the performance of automatic speech processing systems. In this paper, we propose to estimate the speaking rate by segmenting ... 详细信息
来源: 评论
Performance monitoring for end-to-end speech recognition
arXiv
收藏 引用
arXiv 2019年
作者: Li, Ruizhi Sell, Gregory Hermansky, Hynek Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
Measuring performance of an automatic speech recognition (ASR) system without ground-truth could be beneficial in many scenarios, especially with data from unseen domains, where performance can be highly inconsistent.... 详细信息
来源: 评论
Exploring methods for the automatic detection of errors in manual transcription
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Xiaofei Yang, Jinyi Li, Ruizhi Sadhu, Samik Hermansky, Hynek Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
Quality of data plays an important role in most deep learning tasks. In the speech community, transcription of speech recording is indispensable. Since the transcription is usually generated artificially, automaticall... 详细信息
来源: 评论
A practical two-stage training strategy for multi-stream end-to-end speech recognition
arXiv
收藏 引用
arXiv 2019年
作者: Li, Ruizhi Sell, Gregory Wang, Xiaofei Watanabe, Shinji Hermansky, Hynek Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States Speech and Dialog Research Group Microsoft United States
The multi-stream paradigm of audio processing, in which several sources are simultaneously considered, has been an active research area for information fusion. Our previous study offered a promising direction within e... 详细信息
来源: 评论
A synthetic recipe for OCR  15
A synthetic recipe for OCR
收藏 引用
15th IAPR International Conference on Document Analysis and Recognition, ICDAR 2019
作者: Etter, David Rawls, Stephen Carpenter, Cameron Sell, Gregory Human Language Technology Center of Excellence Johns Hopkins University Baltimore United States Information Science Institute University of Southern California United States
Synthetic data generation for optical character recognition (OCR) promises unlimited training data at zero annotation cost. With enough fonts and seed text, we should be able to generate data to train a model that app... 详细信息
来源: 评论
Optical Character Recognition with Chinese and Korean Character Decomposition
Optical Character Recognition with Chinese and Korean Charac...
收藏 引用
International Conference on Document Analysis and Recognition Workshops (ICDARW)
作者: Chun-Chieh Chang Ashish Arora Leibny Paola Garcia Perera David Etter Daniel Povey Sanjeev Khudanpur Johns Hopkins University Baltimore MD USA Center for Language and Speech Processing Johns Hopkins University Baltimore USA Human Language Technology Center of Excellence Johns Hopkins University Baltimore USA
We present our work on Optical Character Recognition on Chinese and Korean Characters for line level transcriptions. One challenge for recognizing Chinese and Korean is that there are thousands of characters for a sys... 详细信息
来源: 评论